BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16129495)

  • 1. Retinal transplants evaluated by optical coherence tomography in photoreceptor degenerate rats.
    Thomas BB; Arai S; Ikai Y; Qiu G; Chen Z; Aramant RB; Sadda SR; Seiler MJ
    J Neurosci Methods; 2006 Mar; 151(2):186-93. PubMed ID: 16129495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of embryonic rat retinal sheet transplants.
    Peng Q; Thomas BB; Aramant RB; Chen Z; Sadda SR; Seiler MJ
    Curr Eye Res; 2007 Sep; 32(9):781-9. PubMed ID: 17882711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats.
    Qiu G; Seiler MJ; Mui C; Arai S; Aramant RB; de Juan E; Sadda S
    Exp Eye Res; 2005 Apr; 80(4):515-25. PubMed ID: 15781279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional optical coherence tomography imaging of retinal sheet implants in live rats.
    Seiler MJ; Rao B; Aramant RB; Yu L; Wang Q; Kitayama E; Pham S; Yan F; Chen Z; Keirstead HS
    J Neurosci Methods; 2010 May; 188(2):250-7. PubMed ID: 20219535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse.
    Li Q; Timmers AM; Hunter K; Gonzalez-Pola C; Lewin AS; Reitze DH; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2981-9. PubMed ID: 11687546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior colliculus responses to light - preserved by transplantation in a slow degeneration rat model.
    Thomas BB; Seiler MJ; Sadda SR; Aramant RB
    Exp Eye Res; 2004 Jul; 79(1):29-39. PubMed ID: 15183098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis.
    Zaveri MS; Conger A; Salter A; Frohman TC; Galetta SL; Markowitz CE; Jacobs DA; Cutter GR; Ying GS; Maguire MG; Calabresi PA; Balcer LJ; Frohman EM
    Arch Neurol; 2008 Jul; 65(7):924-8. PubMed ID: 18625859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography.
    Sarunic MV; Yazdanpanah A; Gibson E; Xu J; Bai Y; Lee S; Saragovi HU; Beg MF
    Opt Express; 2010 Oct; 18(22):23435-41. PubMed ID: 21164686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration.
    Lin B; McLelland BT; Mathur A; Aramant RB; Seiler MJ
    Exp Eye Res; 2018 Sep; 174():13-28. PubMed ID: 29782826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration.
    Seiler MJ; Aramant RB; Seeliger MW; Bragadottir R; Mahoney M; Narfstrom K
    Vet Ophthalmol; 2009; 12(3):158-69. PubMed ID: 19392875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Errors in retinal thickness measurements obtained by optical coherence tomography.
    Sadda SR; Wu Z; Walsh AC; Richine L; Dougall J; Cortez R; LaBree LD
    Ophthalmology; 2006 Feb; 113(2):285-93. PubMed ID: 16406542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective comparison of cirrus and stratus optical coherence tomography for quantifying retinal thickness.
    Kiernan DF; Hariprasad SM; Chin EK; Kiernan CL; Rago J; Mieler WF
    Am J Ophthalmol; 2009 Feb; 147(2):267-275.e2. PubMed ID: 18929353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles.
    Lee DC; Xu J; Sarunic MV; Moritz OL
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1066-70. PubMed ID: 19741241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alignment artifacts in optical coherence tomography analyzed images.
    Leung CK; Chan WM; Chong KK; Chan KC; Yung WH; Tsang MK; Tse RK; Lam DS
    Ophthalmology; 2007 Feb; 114(2):263-70. PubMed ID: 17123619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the posterior segment of the cat eye by optical coherence tomography (OCT).
    Gekeler F; Gmeiner H; Völker M; Sachs H; Messias A; Eule C; Bartz-Schmidt KU; Zrenner E; Shinoda K
    Vet Ophthalmol; 2007; 10(3):173-8. PubMed ID: 17445079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vision Recovery and Connectivity by Fetal Retinal Sheet Transplantation in an Immunodeficient Retinal Degenerate Rat Model.
    Seiler MJ; Lin RE; McLelland BT; Mathur A; Lin B; Sigman J; De Guzman AT; Kitzes LM; Aramant RB; Thomas BB
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):614-630. PubMed ID: 28129425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial and full-thickness neuroretinal transplants.
    Ghosh F; Juliusson B; Arnér K; Ehinger B
    Exp Eye Res; 1999 Jan; 68(1):67-74. PubMed ID: 9986743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transsynaptic virus tracing from host brain to subretinal transplants.
    Seiler MJ; Sagdullaev BT; Woch G; Thomas BB; Aramant RB
    Eur J Neurosci; 2005 Jan; 21(1):161-72. PubMed ID: 15654853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing retinal thickness measurements using automated fast macular thickness map versus six-radial line scans with manual measurements.
    Taban M; Sharma S; Williams DR; Waheed N; Kaiser PK
    Ophthalmology; 2009 May; 116(5):964-70. PubMed ID: 19410954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.