These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16129529)

  • 1. Afforestation, seasalt episodes and acidification--a paired catchment study in western Norway.
    Larssen T; Holme J
    Environ Pollut; 2006 Feb; 139(3):440-50. PubMed ID: 16129529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.
    Chapman PJ; Clark JM; Reynolds B; Adamson JK
    Environ Pollut; 2008 Jan; 151(1):110-20. PubMed ID: 17478019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum dynamics in forest soil waters in Norway.
    Lange H; Solberg S; Clarke N
    Sci Total Environ; 2006 Aug; 367(2-3):942-57. PubMed ID: 16580051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification.
    Harriman R; Watt AW; Christie AE; Moore DW; McCartney AG; Taylor EM
    Sci Total Environ; 2003 Jul; 310(1-3):101-11. PubMed ID: 12812734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model prognoses for future acidification recovery of surface waters in norway using long-term monitoring data.
    Larssen T
    Environ Sci Technol; 2005 Oct; 39(20):7970-9. PubMed ID: 16295863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting chemical response to artificial acidification of three acid-sensitive streams in Maine, USA.
    Goss HV; Norton SA
    Sci Total Environ; 2008 Oct; 404(2-3):245-52. PubMed ID: 18440052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different critical load approaches for assessing streamwater acid-sensitivity to broadleaf woodland expansion.
    Gagkas Z; Heal KV; Nisbet TR; Stuart N
    Sci Total Environ; 2010 Feb; 408(6):1235-44. PubMed ID: 20071010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK.
    Ryan JL; Lynam P; Heal KV; Palmer SM
    Sci Total Environ; 2012 Nov; 439():321-31. PubMed ID: 23085669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of broadleaf woodland cover on streamwater chemistry and risk assessments of streamwater acidification in acid-sensitive catchments in the UK.
    Gagkas Z; Heal KV; Stuart N; Nisbet TR
    Environ Pollut; 2008 Jul; 154(2):232-40. PubMed ID: 18022740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of the North Atlantic Oscillation (NAO) for sea-salt episodes and acidification-related effects in Norwegian rivers.
    Hindar A; Tørseth K; Henriksen A; Orsolini Y
    Environ Sci Technol; 2004 Jan; 38(1):26-33. PubMed ID: 14740713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology.
    Krám P; Hruska J; Driscoll CT; Johnson CE; Oulehle F
    J Inorg Biochem; 2009 Nov; 103(11):1465-72. PubMed ID: 19748678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological stress in native southern brook trout during episodic stream acidification in the Great Smoky Mountains National Park.
    Neff KJ; Schwartz JS; Henry TB; Bruce Robinson R; Moore SE; Kulp MA
    Arch Environ Contam Toxicol; 2009 Aug; 57(2):366-76. PubMed ID: 19057833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial heterogeneity of the spring flood acid pulse in a boreal stream network.
    Buffam I; Laudon H; Seibert J; Mörth CM; Bishop K
    Sci Total Environ; 2008 Dec; 407(1):708-22. PubMed ID: 18940271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal patterns of drivers of episodic acidification in Swedish streams and their relationships to hydrometeorological factors.
    Erlandsson M; Laudon H; Fölster J
    Sci Total Environ; 2010 Sep; 408(20):4633-43. PubMed ID: 20637494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from acidification in central Europe--observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic.
    Hruska J; Moldan F; Krám P
    Environ Pollut; 2002; 120(2):261-74. PubMed ID: 12395838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the long-term chemistry of an upland UK catchment: major solutes and acidification.
    Tipping E; Lawlor AJ; Lofts S
    Environ Pollut; 2006 May; 141(1):151-66. PubMed ID: 16236408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of aluminium and deposition on fish gills during sea salt episodes--catchment liming as countermeasure.
    Teien HC; Standring WJ; Salbu B; Marskar M; Kroglund F; Hindar A
    J Environ Monit; 2004 Mar; 6(3):191-200. PubMed ID: 14999317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003.
    Vuorenmaa J; Forsius M; Mannio J
    Sci Total Environ; 2006 Jul; 365(1-3):47-65. PubMed ID: 16597460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.
    Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D
    Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish mortality during sea salt episodes--catchment liming as a countermeasure.
    Teien HC; Salbu B; Heier LS; Kroglund F; Rosseland BO
    J Environ Monit; 2005 Oct; 7(10):989-98. PubMed ID: 16193171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.