These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16129566)

  • 1. Hierarchy of the heart rhythmogenesis levels is a factor in increasing the reliability of cardiac activity.
    Pokrovskii VM
    Med Hypotheses; 2006; 66(1):158-64. PubMed ID: 16129566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of the heart rhythmogenesis levels: heart rhythm generator in the brain.
    Pokrovskii VM
    J Integr Neurosci; 2005 Jun; 4(2):161-8. PubMed ID: 15988795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative view on the mechanism of cardiac rhythmogenesis.
    Pokrovskii VM
    Heart Lung Circ; 2003; 12(1):18-24. PubMed ID: 16352102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of brain and intracardiac levels of rhythmogenesis hierarchical system at heart rhythm formation.
    Pokrovskii VM; Abushkevich VG; Gurbich DV; Klykova MS; Nechepurenko AA
    J Integr Neurosci; 2008 Dec; 7(4):457-62. PubMed ID: 19132795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Localization and structural functional organization of the nuclear system of the vagus nerves comprising the (cardiac center) of the medulla oblongata].
    Ionavichute VI; Samonina GE; Udel'nov MG
    Usp Fiziol Nauk; 1972; 3(2):3-23. PubMed ID: 4200238
    [No Abstract]   [Full Text] [Related]  

  • 6. The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus.
    Taylor EW; Leite CA; Florindo LH; Beläo T; Rantin FT
    J Exp Biol; 2009 Apr; 212(Pt 7):906-13. PubMed ID: 19282487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hemodynamic shifts upon electrical stimulation of various structures of the bulbar cardiovascular center].
    Gurevich MI; Shapoval LN
    Neirofiziologiia; 1971; 3(6):631-6. PubMed ID: 5153934
    [No Abstract]   [Full Text] [Related]  

  • 8. [Cardiorespiratory synchronism as a means for demonstrating the cyclic regulation of the heart rhythm by the central nervous system].
    Pokrovskiĭ VM; Abushkevich VG; Dashkovskiĭ AI; Diak IA; Makukhin VV; Pokhot'ko AG; Skibitskiĭ VV; Tatulian VA; Shapiro SV
    Fiziol Zh SSSR Im I M Sechenova; 1990 Oct; 76(10):1340-5. PubMed ID: 1966087
    [No Abstract]   [Full Text] [Related]  

  • 9. Intermingling of efferent fibres in right vagus and sympathetic nerves supplying the sino-auricular node and adjacent tissues of cat as evident from a study of vagal tachycardia.
    Tripathi ON; Ray C
    Indian J Exp Biol; 1984 May; 22(5):255-9. PubMed ID: 6480058
    [No Abstract]   [Full Text] [Related]  

  • 10. Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node.
    Jalife J; Slenter VA; Salata JJ; Michaels DC
    Circ Res; 1983 Jun; 52(6):642-56. PubMed ID: 6861283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rhythmogenesis in the sinoatrial unit of the heart].
    Mazurov ME
    Biofizika; 2006; 51(6):1092-9. PubMed ID: 17175920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic changes in baroreceptor-sympathetic coupling during the respiratory cycle.
    Gebber GL; Das M; Barman SM
    Brain Res; 2005 Jun; 1046(1-2):216-23. PubMed ID: 15869746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Computer simulation of the sinoatrial node pacemaker synchronization in response to periodic stimulation of the vagus nerve].
    Aliev RR
    Biofizika; 2008; 53(6):1125-8. PubMed ID: 19137701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of the medulla oblongata in regulating the rhythmogenic function of the smooth musculature].
    Bakunts SA; Zaplishnyĭ MN; Khachatrian AV
    Fiziol Zh SSSR Im I M Sechenova; 1982 Jul; 68(7):890-5. PubMed ID: 7117613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On reliability of the activity of some paired structures of the medulla oblongata in animals].
    Stefantsov BD; Goncharova LS
    Fiziol Zh SSSR Im I M Sechenova; 1968 Apr; 54(4):398-405. PubMed ID: 5729638
    [No Abstract]   [Full Text] [Related]  

  • 16. Stochastic vagal modulation of cardiac pacemaking may lead to erroneous identification of cardiac "chaos".
    Zhang JQ; Holden AV; Monfredi O; Boyett MR; Zhang H
    Chaos; 2009 Jun; 19(2):028509. PubMed ID: 19566284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac resynchronization therapy and phase resetting of the sinoatrial node: a conjecture.
    Cantini F; Varanini M; Macerata A; Piacenti M; Morales MA; Balocchi R
    Chaos; 2007 Mar; 17(1):015106. PubMed ID: 17411263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human vagal heart rate responses in warned reaction time tasks: a cross-validation with simulated vagus-sino-atrial node interactions.
    Somsen R; Jennings JR; van der Molen M
    J Electrocardiol; 2002; 35 Suppl():231-7. PubMed ID: 12539132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The synchronizing interaction and mechanism of the formation of the common rhythm of the cardiac pacemaker. I. The modeling of the interaction of 2 pacemaker elements].
    Mazurov ME; Sukhova GS
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1991; (1):140-9. PubMed ID: 2054416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The projection of vagal, cardiac C-fibres to the brain stem of the cat [proceedings].
    Donoghue S; Fox RE; Kidd C; Koley BN
    J Physiol; 1977 Aug; 270(1):44P-45P. PubMed ID: 915791
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.