These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 16129588)

  • 1. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.
    Keck CM; Müller RH
    Eur J Pharm Biopharm; 2006 Jan; 62(1):3-16. PubMed ID: 16129588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New method for the effective production of ultrafine drug nanocrystals.
    Möschwitzer J; Müller RH
    J Nanosci Nanotechnol; 2006; 6(9-10):3145-53. PubMed ID: 17048530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies.
    Du J; Li X; Zhao H; Zhou Y; Wang L; Tian S; Wang Y
    Int J Pharm; 2015 Nov; 495(2):738-49. PubMed ID: 26383838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical nanocrystals: production by wet milling and applications.
    Malamatari M; Taylor KMG; Malamataris S; Douroumis D; Kachrimanis K
    Drug Discov Today; 2018 Mar; 23(3):534-547. PubMed ID: 29326082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosuspensions of poorly water soluble drugs prepared by top-down technologies.
    Zhang X; Li LC; Mao S
    Curr Pharm Des; 2014; 20(3):388-407. PubMed ID: 23651400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives.
    Shegokar R; Müller RH
    Int J Pharm; 2010 Oct; 399(1-2):129-39. PubMed ID: 20674732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.
    Xia D; Gan Y; Cui F
    Curr Pharm Des; 2014; 20(3):408-35. PubMed ID: 23651396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.
    Salazar J; Müller RH; Möschwitzer JP
    Eur J Pharm Sci; 2013 Jul; 49(4):565-77. PubMed ID: 23587645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption.
    Ghosh I; Schenck D; Bose S; Ruegger C
    Eur J Pharm Sci; 2012 Nov; 47(4):718-28. PubMed ID: 22940548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation.
    Krause KP; Müller RH
    Int J Pharm; 2001 Feb; 214(1-2):21-4. PubMed ID: 11282231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery.
    Lai F; Schlich M; Pireddu R; Corrias F; Fadda AM; Sinico C
    Curr Pharm Des; 2015; 21(42):6089-103. PubMed ID: 26503149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation.
    Freag MS; Elnaggar YS; Abdallah OY
    Int J Pharm; 2013 Sep; 454(1):462-71. PubMed ID: 23830765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug nanocrystals in the commercial pharmaceutical development process.
    Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):142-56. PubMed ID: 23000841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):126-41. PubMed ID: 23333709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and isolation of pharmaceutical drug nanoparticles.
    Verma V; Ryan KM; Padrela L
    Int J Pharm; 2021 Jun; 603():120708. PubMed ID: 33992712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnology versus other techniques in improving drug dissolution.
    Kwok PC; Chan HK
    Curr Pharm Des; 2014; 20(3):474-82. PubMed ID: 23651399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production - a case study with ursodeoxycholic acid.
    Li Y; Wang Y; Yue PF; Hu PY; Wu ZF; Yang M; Yuan HL
    Pharm Dev Technol; 2014 Sep; 19(6):662-70. PubMed ID: 23869484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug release and permeation studies of nanosuspensions based on solidified reverse micellar solutions (SRMS).
    Friedrich I; Reichl S; Müller-Goymann CC
    Int J Pharm; 2005 Nov; 305(1-2):167-75. PubMed ID: 16242276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology.
    Merisko-Liversidge E; Liversidge GG
    Adv Drug Deliv Rev; 2011 May; 63(6):427-40. PubMed ID: 21223990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategies for the formulation and processing of poorly water-soluble drugs.
    Göke K; Lorenz T; Repanas A; Schneider F; Steiner D; Baumann K; Bunjes H; Dietzel A; Finke JH; Glasmacher B; Kwade A
    Eur J Pharm Biopharm; 2018 May; 126():40-56. PubMed ID: 28532676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.