These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16129670)

  • 41. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation.
    Tan GT; DeBlasio A; Mankin AS
    J Mol Biol; 1996 Aug; 261(2):222-30. PubMed ID: 8757289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome.
    Samaha RR; Green R; Noller HF
    Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation.
    Simonović M; Steitz TA
    Biochim Biophys Acta; 2009; 1789(9-10):612-23. PubMed ID: 19595805
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanism of peptidyl transfer catalysis by the ribosome.
    Leung EK; Suslov N; Tuttle N; Sengupta R; Piccirilli JA
    Annu Rev Biochem; 2011; 80():527-55. PubMed ID: 21548786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mutational analysis of the donor substrate binding site of the ribosomal peptidyltransferase center.
    Saarma U; Spahn CM; Nierhaus KH; Remme J
    RNA; 1998 Feb; 4(2):189-94. PubMed ID: 9570318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and functional prerequisites for ribosomal nascent peptide acceptors: attempts to decipher the nature of the ribosome's catalysis of peptide bond formation.
    Michel BY; Krishnakumar KS; Johansson M; Ehrenberg M; Strazewski P
    Nucleic Acids Symp Ser (Oxf); 2008; (52):33-4. PubMed ID: 18776239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system.
    Tamura K; Schimmel P
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1393-7. PubMed ID: 11171961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of peptide bond formation on the ribosome.
    Rodnina MV; Beringer M; Wintermeyer W
    Q Rev Biophys; 2006 Aug; 39(3):203-25. PubMed ID: 16893477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis.
    Lang K; Erlacher M; Wilson DN; Micura R; Polacek N
    Chem Biol; 2008 May; 15(5):485-92. PubMed ID: 18439847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Puromycin interacts with the donor (P) site of Escherichia coli ribosomes].
    Ivanov IuV; SaminskiÄ­ EM
    Mol Biol (Mosk); 1984; 18(5):1301-5. PubMed ID: 6390175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center.
    Chirkova A; Erlacher MD; Clementi N; Zywicki M; Aigner M; Polacek N
    Nucleic Acids Res; 2010 Aug; 38(14):4844-55. PubMed ID: 20375101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    Sharma PK; Xiang Y; Kato M; Warshel A
    Biochemistry; 2005 Aug; 44(34):11307-14. PubMed ID: 16114867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Function of the ribosomal E-site: a mutagenesis study.
    Sergiev PV; Lesnyak DV; Kiparisov SV; Burakovsky DE; Leonov AA; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2005; 33(18):6048-56. PubMed ID: 16243787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 23S rRNA similarity from selection for peptidyl transferase mimicry.
    Welch M; Majerfeld I; Yarus M
    Biochemistry; 1997 Jun; 36(22):6614-23. PubMed ID: 9184141
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones.
    Bobkova EV; Yan YP; Jordan DB; Kurilla MG; Pompliano DL
    J Biol Chem; 2003 Mar; 278(11):9802-7. PubMed ID: 12645571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.
    Fung AW; Ebhardt HA; Abeysundara H; Moore J; Xu Z; Fahlman RP
    J Mol Biol; 2011 Jun; 409(4):617-29. PubMed ID: 21530538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peptidyl transferase and beyond.
    Wower J; Wower IK; Kirillov SV; Rosen KV; Hixson SS; Zimmermann RA
    Biochem Cell Biol; 1995; 73(11-12):1041-7. PubMed ID: 8722019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal ion probing of rRNAs: evidence for evolutionarily conserved divalent cation binding pockets.
    Polacek N; Barta A
    RNA; 1998 Oct; 4(10):1282-94. PubMed ID: 9769102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.