These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 16129679)
1. Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. Kamiya Y; Yamaguchi Y; Takahashi N; Arata Y; Kasai K; Ihara Y; Matsuo I; Ito Y; Yamamoto K; Kato K J Biol Chem; 2005 Nov; 280(44):37178-82. PubMed ID: 16129679 [TBL] [Abstract][Full Text] [Related]
2. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. Kamiya Y; Kamiya D; Yamamoto K; Nyfeler B; Hauri HP; Kato K J Biol Chem; 2008 Jan; 283(4):1857-61. PubMed ID: 18025080 [TBL] [Abstract][Full Text] [Related]
3. Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Reiterer V; Nyfeler B; Hauri HP Traffic; 2010 Aug; 11(8):1044-55. PubMed ID: 20477988 [TBL] [Abstract][Full Text] [Related]
4. Clusters of VIP-36-positive vesicles between endoplasmic reticulum and Golgi apparatus in GH3 cells. Shimada O; Hara-Kuge S; Yamashita K; Tosaka-Shimada H; Yanchao L; Yongnan L; Atsumi S; Ishikawa H Cell Struct Funct; 2003 Jun; 28(3):155-63. PubMed ID: 12951436 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36. Satoh T; Suzuki K; Yamaguchi T; Kato K PLoS One; 2014; 9(2):e87963. PubMed ID: 24498414 [TBL] [Abstract][Full Text] [Related]
6. Quantitative ER <--> Golgi transport kinetics and protein separation upon Golgi exit revealed by vesicular integral membrane protein 36 dynamics in live cells. Dahm T; White J; Grill S; Füllekrug J; Stelzer EH Mol Biol Cell; 2001 May; 12(5):1481-98. PubMed ID: 11359937 [TBL] [Abstract][Full Text] [Related]
7. Subcellular localization of ERGIC-53 under endoplasmic reticulum stress condition. Qin SY; Kawasaki N; Hu D; Tozawa H; Matsumoto N; Yamamoto K Glycobiology; 2012 Dec; 22(12):1709-20. PubMed ID: 22821029 [TBL] [Abstract][Full Text] [Related]
8. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Neve EP; Svensson K; Fuxe J; Pettersson RF Exp Cell Res; 2003 Aug; 288(1):70-83. PubMed ID: 12878160 [TBL] [Abstract][Full Text] [Related]
9. VIPL has sugar-binding activity specific for high-mannose-type N-glycans, and glucosylation of the alpha1,2 mannotriosyl branch blocks its binding. Yamaguchi D; Kawasaki N; Matsuo I; Totani K; Tozawa H; Matsumoto N; Ito Y; Yamamoto K Glycobiology; 2007 Oct; 17(10):1061-9. PubMed ID: 17621594 [TBL] [Abstract][Full Text] [Related]
10. Stable interaction of the cargo receptor VIP36 with molecular chaperone BiP. Nawa D; Shimada O; Kawasaki N; Matsumoto N; Yamamoto K Glycobiology; 2007 Sep; 17(9):913-21. PubMed ID: 17586539 [TBL] [Abstract][Full Text] [Related]
11. VIP36 localisation to the early secretory pathway. Füllekrug J; Scheiffele P; Simons K J Cell Sci; 1999 Sep; 112 ( Pt 17)():2813-21. PubMed ID: 10444376 [TBL] [Abstract][Full Text] [Related]
12. Detection of weak sugar binding activity of VIP36 using VIP36-streptavidin complex and membrane-based sugar chains. Kawasaki N; Matsuo I; Totani K; Nawa D; Suzuki N; Yamaguchi D; Matsumoto N; Ito Y; Yamamoto K J Biochem; 2007 Feb; 141(2):221-9. PubMed ID: 17169971 [TBL] [Abstract][Full Text] [Related]
13. Involvement of VIP36 in intracellular transport and secretion of glycoproteins in polarized Madin-Darby canine kidney (MDCK) cells. Hara-Kuge S; Ohkura T; Ideo H; Shimada O; Atsumi S; Yamashita K J Biol Chem; 2002 May; 277(18):16332-9. PubMed ID: 11872745 [TBL] [Abstract][Full Text] [Related]
14. Recombinant Expression and Purification of Animal Intracellular L-Type Lectins. Satoh T; Kato K Methods Mol Biol; 2020; 2132():21-28. PubMed ID: 32306311 [TBL] [Abstract][Full Text] [Related]
15. Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1-->2 mannosyl residues in MDCK cells. Hara-Kuge S; Ohkura T; Seko A; Yamashita K Glycobiology; 1999 Aug; 9(8):833-9. PubMed ID: 10406849 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36. Satoh T; Cowieson NP; Hakamata W; Ideo H; Fukushima K; Kurihara M; Kato R; Yamashita K; Wakatsuki S J Biol Chem; 2007 Sep; 282(38):28246-55. PubMed ID: 17652092 [TBL] [Abstract][Full Text] [Related]
17. Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport. Satoh T; Nishio M; Suzuki K; Yagi-Utsumi M; Kamiya Y; Mizushima T; Kato K Acta Crystallogr F Struct Biol Commun; 2020 May; 76(Pt 5):216-221. PubMed ID: 32356523 [TBL] [Abstract][Full Text] [Related]
19. VIP36 protein is a target of ectodomain shedding and regulates phagocytosis in macrophage Raw 264.7 cells. Shirakabe K; Hattori S; Seiki M; Koyasu S; Okada Y J Biol Chem; 2011 Dec; 286(50):43154-63. PubMed ID: 22016386 [TBL] [Abstract][Full Text] [Related]
20. Adaptor Protein CD2AP and L-type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex. Kwon SH; Oh S; Nacke M; Mostov KE; Lipschutz JH J Biol Chem; 2016 Dec; 291(49):25462-25475. PubMed ID: 27765817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]