BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16129776)

  • 1. Probing the primary screening efficiency by multiple replicate testing: a quantitative analysis of hit confirmation and false screening results of a biochemical assay.
    Zhang JH; Wu X; Sills MA
    J Biomol Screen; 2005 Oct; 10(7):695-704. PubMed ID: 16129776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further comparison of primary hit identification by different assay technologies and effects of assay measurement variability.
    Wu X; Sills MA; Zhang JH
    J Biomol Screen; 2005 Sep; 10(6):581-9. PubMed ID: 16103421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings.
    Wu Z; Liu D; Sui Y
    J Biomol Screen; 2008 Feb; 13(2):159-67. PubMed ID: 18216390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced HTS hit selection via a local hit rate analysis.
    Posner BA; Xi H; Mills JE
    J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assay concordance between SPA and TR-FRET in high-throughput screening.
    von Ahsen O; Schmidt A; Klotz M; Parczyk K
    J Biomol Screen; 2006 Sep; 11(6):606-16. PubMed ID: 16760369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments.
    Zhang XD; Ferrer M; Espeseth AS; Marine SD; Stec EM; Crackower MA; Holder DJ; Heyse JF; Strulovici B
    J Biomol Screen; 2007 Jun; 12(4):497-509. PubMed ID: 17435171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of assay technologies for a nuclear receptor assay screen reveals differences in the sets of identified functional antagonists.
    Wu X; Glickman JF; Bowen BR; Sills MA
    J Biomol Screen; 2003 Aug; 8(4):381-92. PubMed ID: 14567790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the prediction of statistical parameters in high-throughput screening using resampling techniques.
    Ilouga PE; Hesterkamp T
    J Biomol Screen; 2012 Jul; 17(6):705-12. PubMed ID: 22460175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays.
    Zhang XD
    J Biomol Screen; 2007 Aug; 12(5):645-55. PubMed ID: 17517904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.
    Shun TY; Lazo JS; Sharlow ER; Johnston PA
    J Biomol Screen; 2011 Jan; 16(1):1-14. PubMed ID: 21160066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual screening to enrich hit lists from high-throughput screening: a case study on small-molecule inhibitors of angiogenin.
    Jenkins JL; Kao RY; Shapiro R
    Proteins; 2003 Jan; 50(1):81-93. PubMed ID: 12471601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing Bayesian thinking to high-throughput screening for false-negative rate estimation.
    Wei X; Gao L; Zhang X; Qian H; Rowan K; Mark D; Peng Z; Huang KS
    J Biomol Screen; 2013 Oct; 18(9):1121-31. PubMed ID: 23720569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexing nuclear receptors for agonist identification in a cell-based reporter gene high-throughput screen.
    Grover GS; Turner BA; Parker CN; Meier J; Lala DS; Lee PH
    J Biomol Screen; 2003 Jun; 8(3):239-46. PubMed ID: 12857377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment-based screening by biochemical assays: Systematic feasibility studies with trypsin and MMP12.
    Boettcher A; Ruedisser S; Erbel P; Vinzenz D; Schiering N; Hassiepen U; Rigollier P; Mayr LM; Woelcke J
    J Biomol Screen; 2010 Oct; 15(9):1029-41. PubMed ID: 20855559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens.
    Huth JR; Mendoza R; Olejniczak ET; Johnson RW; Cothron DA; Liu Y; Lerner CG; Chen J; Hajduk PJ
    J Am Chem Soc; 2005 Jan; 127(1):217-24. PubMed ID: 15631471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of fluorescence polarization and time resolved fluorescence resonance energy transfer assay formats for SAR studies: Src kinase as a model system.
    Newman M; Josiah S
    J Biomol Screen; 2004 Sep; 9(6):525-32. PubMed ID: 15452339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical practice in high-throughput screening data analysis.
    Malo N; Hanley JA; Cerquozzi S; Pelletier J; Nadon R
    Nat Biotechnol; 2006 Feb; 24(2):167-75. PubMed ID: 16465162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput screening by mass spectrometry: comparison with the scintillation proximity assay with a focused-file screen of AKT1/PKB alpha.
    Quercia AK; LaMarr WA; Myung J; Ozbal CC; Landro JA; Lumb KJ
    J Biomol Screen; 2007 Jun; 12(4):473-80. PubMed ID: 17478485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental design and statistical methods for improved hit detection in high-throughput screening.
    Malo N; Hanley JA; Carlile G; Liu J; Pelletier J; Thomas D; Nadon R
    J Biomol Screen; 2010 Sep; 15(8):990-1000. PubMed ID: 20817887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a homogeneous, fluorescence resonance energy transfer-based in vitro recruitment assay for peroxisome proliferator-activated receptor delta via selection of active LXXLL coactivator peptides.
    Drake KA; Zhang JH; Harrison RK; McGeehan GM
    Anal Biochem; 2002 May; 304(1):63-9. PubMed ID: 11969190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.