These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 16129795)
1. Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Silva J; Rudy Y Circulation; 2005 Sep; 112(10):1384-91. PubMed ID: 16129795 [TBL] [Abstract][Full Text] [Related]
2. Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2. Jiang M; Xu X; Wang Y; Toyoda F; Liu XS; Zhang M; Robinson RB; Tseng GN J Biol Chem; 2009 Jun; 284(24):16452-16462. PubMed ID: 19372218 [TBL] [Abstract][Full Text] [Related]
3. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Shamgar L; Ma L; Schmitt N; Haitin Y; Peretz A; Wiener R; Hirsch J; Pongs O; Attali B Circ Res; 2006 Apr; 98(8):1055-63. PubMed ID: 16556865 [TBL] [Abstract][Full Text] [Related]
4. Paroxysmal beta-adrenergic receptor-mediated alterations in ventricular repolarization at rapid heart rates during inhibition of delayed rectifier currents. Overholser BR; Zheng X; Tisdale JE J Cardiovasc Pharmacol; 2009 Sep; 54(3):253-62. PubMed ID: 19620881 [TBL] [Abstract][Full Text] [Related]
5. Two components of delayed rectifier K+ current in heart: molecular basis, functional diversity, and contribution to repolarization. Cheng JH; Kodama I Acta Pharmacol Sin; 2004 Feb; 25(2):137-45. PubMed ID: 14769199 [TBL] [Abstract][Full Text] [Related]
6. Slow delayed rectifier potassium current blockade contributes importantly to drug-induced long QT syndrome. Veerman CC; Verkerk AO; Blom MT; Klemens CA; Langendijk PN; van Ginneken AC; Wilders R; Tan HL Circ Arrhythm Electrophysiol; 2013 Oct; 6(5):1002-9. PubMed ID: 23995305 [TBL] [Abstract][Full Text] [Related]
7. Rb+ efflux through functional activation of cardiac KCNQ1/minK channels by the benzodiazepine R-L3 (L-364,373). Jow F; Tseng E; Maddox T; Shen R; Kowal D; Dunlop J; Mekonnen B; Wang K Assay Drug Dev Technol; 2006 Aug; 4(4):443-50. PubMed ID: 16945016 [TBL] [Abstract][Full Text] [Related]
8. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. Seebohm G; Westenskow P; Lang F; Sanguinetti MC J Physiol; 2005 Mar; 563(Pt 2):359-68. PubMed ID: 15649981 [TBL] [Abstract][Full Text] [Related]
9. BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs). Agsten M; Hessler S; Lehnert S; Volk T; Rittger A; Hartmann S; Raab C; Kim DY; Groemer TW; Schwake M; Alzheimer C; Huth T J Mol Cell Cardiol; 2015 Dec; 89(Pt B):335-48. PubMed ID: 26454161 [TBL] [Abstract][Full Text] [Related]
10. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Jost N; Virág L; Bitay M; Takács J; Lengyel C; Biliczki P; Nagy Z; Bogáts G; Lathrop DA; Papp JG; Varró A Circulation; 2005 Sep; 112(10):1392-9. PubMed ID: 16129791 [TBL] [Abstract][Full Text] [Related]
11. A590T mutation in KCNQ1 C-terminal helix D decreases IKs channel trafficking and function but not Yotiao interaction. Kinoshita K; Komatsu T; Nishide K; Hata Y; Hisajima N; Takahashi H; Kimoto K; Aonuma K; Tsushima E; Tabata T; Yoshida T; Mori H; Nishida K; Yamaguchi Y; Ichida F; Fukurotani K; Inoue H; Nishida N J Mol Cell Cardiol; 2014 Jul; 72():273-80. PubMed ID: 24713462 [TBL] [Abstract][Full Text] [Related]
12. Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K Abramochkin DV; Hassinen M; Vornanen M Pflugers Arch; 2018 Dec; 470(12):1753-1764. PubMed ID: 30116893 [TBL] [Abstract][Full Text] [Related]
13. Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Terrenoire C; Clancy CE; Cormier JW; Sampson KJ; Kass RS Circ Res; 2005 Mar; 96(5):e25-34. PubMed ID: 15731462 [TBL] [Abstract][Full Text] [Related]
14. Induced KCNQ1 autoimmunity accelerates cardiac repolarization in rabbits: potential significance in arrhythmogenesis and antiarrhythmic therapy. Li J; Maguy A; Duverger JE; Vigneault P; Comtois P; Shi Y; Tardif JC; Thomas D; Nattel S Heart Rhythm; 2014 Nov; 11(11):2092-100. PubMed ID: 25087487 [TBL] [Abstract][Full Text] [Related]
15. Arrhythmia formation in subclinical ("silent") long QT syndrome requires multiple insults: quantitative mechanistic study using the KCNQ1 mutation Q357R as example. O'Hara T; Rudy Y Heart Rhythm; 2012 Feb; 9(2):275-82. PubMed ID: 21952006 [TBL] [Abstract][Full Text] [Related]
16. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Tsuji Y; Zicha S; Qi XY; Kodama I; Nattel S Circulation; 2006 Jan; 113(3):345-55. PubMed ID: 16432066 [TBL] [Abstract][Full Text] [Related]
17. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Viswanathan PC; Shaw RM; Rudy Y Circulation; 1999 May; 99(18):2466-74. PubMed ID: 10318671 [TBL] [Abstract][Full Text] [Related]
18. Delayed KCNQ1/KCNE1 assembly on the cell surface helps I Wilson ZT; Jiang M; Geng J; Kaur S; Workman SW; Hao J; Bernas T; Tseng GN J Physiol; 2021 Jul; 599(13):3337-3361. PubMed ID: 33963564 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis of cardiac action potential repolarization. Rudy Y Ann N Y Acad Sci; 2008 Mar; 1123():113-8. PubMed ID: 18375583 [TBL] [Abstract][Full Text] [Related]
20. Modelling the molecular basis of cardiac repolarization. Rudy Y Europace; 2007 Nov; 9 Suppl 6():vi17-9. PubMed ID: 17959688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]