BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16129978)

  • 1. Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling.
    Bickler PE; Zhan X; Fahlman CS
    Anesthesiology; 2005 Sep; 103(3):532-9. PubMed ID: 16129978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases.
    Gray JJ; Bickler PE; Fahlman CS; Zhan X; Schuyler JA
    Anesthesiology; 2005 Mar; 102(3):606-15. PubMed ID: 15731600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons.
    Bickler PE; Fahlman CS
    Neuroscience; 2004; 127(3):673-83. PubMed ID: 15283966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoflurane neuroprotection in rat hippocampal slices decreases with aging: changes in intracellular Ca2+ regulation and N-methyl-D-aspartate receptor-mediated Ca2+ influx.
    Zhan X; Fahlman CS; Bickler PE
    Anesthesiology; 2006 May; 104(5):995-1003. PubMed ID: 16645452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual isoflurane-induced preconditioning improves neuroprotection in rat brain in vitro and the role of extracellular signal--regulated protein kinase.
    Wang S; Guo SX; Dai ZG; Dong XW; Liu Y; Jiang S; Wang ZP
    Chin Med Sci J; 2011 Mar; 26(1):36-42. PubMed ID: 21496421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures.
    Bickler PE; Fahlman CS
    Anesthesiology; 2009 Aug; 111(2):258-66. PubMed ID: 19568165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inhaled anesthetic, isoflurane, enhances Ca2+-dependent survival signaling in cortical neurons and modulates MAP kinases, apoptosis proteins and transcription factors during hypoxia.
    Bickler PE; Fahlman CS
    Anesth Analg; 2006 Aug; 103(2):419-29, table of contents. PubMed ID: 16861427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors.
    Bickler PE; Fahlman CS
    Brain Res; 2010 Jun; 1340():86-95. PubMed ID: 20434434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the neuroprotective ERK signaling pathway by fructose-1,6-bisphosphate during hypoxia involves intracellular Ca2+ and phospholipase C.
    Fahlman CS; Bickler PE; Sullivan B; Gregory GA
    Brain Res; 2002 Dec; 958(1):43-51. PubMed ID: 12468029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons.
    Bickler PE; Fahlman CS; Gray J; McKleroy W
    Neuroscience; 2009 Apr; 160(1):51-60. PubMed ID: 19217932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile anesthetics increase intracellular calcium in cerebrocortical and hippocampal neurons.
    Kindler CH; Eilers H; Donohoe P; Ozer S; Bickler PE
    Anesthesiology; 1999 Apr; 90(4):1137-45. PubMed ID: 10201687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preconditioning-induced activation of ERK5 is dependent on moderate Ca2+ influx via NMDA receptors and contributes to ischemic tolerance in the hippocampal CA1 region of rats.
    Wang RM; Yang F; Zhang YX
    Life Sci; 2006 Oct; 79(19):1839-46. PubMed ID: 16859717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury.
    Li QF; Zhu YS; Jiang H
    Brain Res; 2008 Dec; 1245():26-35. PubMed ID: 18930717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gamma-Aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures.
    Bickler PE; Warner DS; Stratmann G; Schuyler JA
    Anesth Analg; 2003 Aug; 97(2):564-571. PubMed ID: 12873954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylinositol-3-kinase-Akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein.
    Cheng G; Yu Z; Zhou D; Mattson MP
    Exp Neurol; 2002 Jun; 175(2):407-14. PubMed ID: 12061870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic excitotoxicity injury of the immature hippocampal pyramidal neurons' exposure to isoflurane.
    Zhao YL; Xiang Q; Shi QY; Li SY; Tan L; Wang JT; Jin XG; Luo AL
    Anesth Analg; 2011 Nov; 113(5):1152-60. PubMed ID: 21918167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoflurane prevents delayed cell death in an organotypic slice culture model of cerebral ischemia.
    Sullivan BL; Leu D; Taylor DM; Fahlman CS; Bickler PE
    Anesthesiology; 2002 Jan; 96(1):189-95. PubMed ID: 11753020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.
    Rundén-Pran E; Tansø R; Haug FM; Ottersen OP; Ring A
    Neuroscience; 2005; 136(3):795-810. PubMed ID: 16344152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice.
    Lange-Asschenfeldt C; Raval AP; Dave KR; Mochly-Rosen D; Sick TJ; Pérez-Pinzón MA
    J Cereb Blood Flow Metab; 2004 Jun; 24(6):636-45. PubMed ID: 15181371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model.
    Blanck TJ; Haile M; Xu F; Zhang J; Heerdt P; Veselis RA; Beckman J; Kang R; Adamo A; Hemmings H
    Anesthesiology; 2000 Nov; 93(5):1285-93. PubMed ID: 11046218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.