BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 16130130)

  • 1. Configurational preference of pyrrolidine-based oxy-peptide nucleic acids as hybridization counterparts with DNA and RNA.
    Kitamatsu M; Shigeyasu M; Saitoh M; Sisido M
    Biopolymers; 2006; 84(3):267-73. PubMed ID: 16130130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxy-peptide nucleic acid with a pyrrolidine ring that is configurationally optimized for hybridization with DNA.
    Kitamatsu M; Shigeyasu M; Okada T; Sisido M
    Chem Commun (Camb); 2004 May; (10):1208-9. PubMed ID: 15136841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic analysis of hybridization between POPNA and DNA.
    Kitamatsu M; Shigeyasu M; Okada T; Nakai T; Saitou M; Sisido M
    Nucleic Acids Res Suppl; 2002; (2):261-2. PubMed ID: 12903204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric (aeg-pyrrolidine)PNAs: synthesis and stereo-discriminative duplex binding with DNA/RNA.
    Lonkar PS; Ganesh KN; Kumar VA
    Org Biomol Chem; 2004 Sep; 2(18):2604-11. PubMed ID: 15351824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of pyrrolidine-based oxy-peptide nucleic acids that contain four bases and their properties.
    Kitamatsu M; Shigeyasu M; Okada T; Saitoh M; Sisido M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):227-8. PubMed ID: 17150561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (SR/RS)-cyclohexanyl PNAs: conformationally preorganized PNA analogues with unprecedented preference for duplex formation with RNA.
    Govindaraju T; Kumar VA; Ganesh KN
    J Am Chem Soc; 2005 Mar; 127(12):4144-5. PubMed ID: 15783176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a PNA2-DNA2 hybrid quadruplex.
    Datta B; Schmitt C; Armitage BA
    J Am Chem Soc; 2003 Apr; 125(14):4111-8. PubMed ID: 12670232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid oligomer duplexes formed with phosphorothioate DNAs: CD spectra and melting temperatures of S-DNA.RNA hybrids are sequence-dependent but consistent with similar heteronomous conformations.
    Hashem GM; Pham L; Vaughan MR; Gray DM
    Biochemistry; 1998 Jan; 37(1):61-72. PubMed ID: 9425026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs.
    Sforza S; Galaverna G; Dossena A; Corradini R; Marchelli R
    Chirality; 2002 Jul; 14(7):591-8. PubMed ID: 12112334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backbone-extended pyrrolidine peptide nucleic acids (bepPNA): design, synthesis and DNA/RNA binding studies.
    Govindaraju T; Kumar VA
    Chem Commun (Camb); 2005 Jan; (4):495-7. PubMed ID: 15654381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense effect of pyrrolidine-based oxy-peptide nucleic acids in Escherichia coli.
    Kitamatsu M; Kurami S; Ohtsuki T; Sisido M
    Bioorg Med Chem Lett; 2011 Jan; 21(1):225-7. PubMed ID: 21112781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilities of internal rU-dG and rG-dT pairs in RNA/DNA hybrids.
    Sugimoto N; Yasumatsu I; Fujimoto M
    Nucleic Acids Symp Ser; 1997; (37):199-200. PubMed ID: 9586068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of (1S,2R/1R,2S)-aminocyclohexylglycyl PNAs as conformationally preorganized PNA analogues for DNA/RNA recognition.
    Govindaraju T; Kumar VA; Ganesh KN
    J Org Chem; 2004 Mar; 69(6):1858-65. PubMed ID: 15058930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of peptide ribonucleic acid consisting of D- and L-gamma-glutamic acid as a backbone structure.
    Wada T; Hashimoto Y; Sato H; Inoue Y
    Nucleic Acids Symp Ser (Oxf); 2004; (48):27-8. PubMed ID: 17150461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and hybridization properties of l-oligodeoxynucleotide analogues fixed in a low anti glycosyl conformation.
    Urata H; Miyagoshi H; Kumashiro T; Yumoto T; Mori K; Shoji K; Gohda K; Akagi M
    Org Biomol Chem; 2004 Jan; 2(2):183-9. PubMed ID: 14737640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformationally constrained PNA analogues: structural evolution toward DNA/RNA binding selectivity.
    Kumar VA; Ganesh KN
    Acc Chem Res; 2005 May; 38(5):404-12. PubMed ID: 15895978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes.
    Kaur H; Arora A; Wengel J; Maiti S
    Biochemistry; 2006 Jun; 45(23):7347-55. PubMed ID: 16752924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (1S,2R/1R,2S)-cis-cyclopentyl PNAs (cpPNAs) as constrained PNA analogues: synthesis and evaluation of aeg-cpPNA chimera and stereopreferences in hybridization with DNA/RNA.
    Govindaraju T; Kumar VA; Ganesh KN
    J Org Chem; 2004 Aug; 69(17):5725-34. PubMed ID: 15307746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-LNA (locked nucleic acid with alpha-D-configuration): synthesis and selective parallel recognition of RNA.
    Nielsen P; Christensen NK; Dalskov JK
    Chemistry; 2002 Feb; 8(3):712-22. PubMed ID: 11855719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New thiazane and thiazolidine PNA monomers: synthesis, incorporation into PNAs and hybridization studies.
    Bregant S; Burlina F; Chassaing G
    Bioorg Med Chem Lett; 2002 Apr; 12(7):1047-50. PubMed ID: 11909714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.