These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1613027)

  • 1. Synthesis of photoreactive poly(ethylene glycol) and its application to the prevention of surface-induced platelet activation.
    Tseng YC; Park K
    J Biomed Mater Res; 1992 Mar; 26(3):373-91. PubMed ID: 1613027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafting of ethylene glycol-butadiene block copolymers onto dimethyl-dichlorosilane-coated glass by gamma-irradiation.
    Tseng YC; McPherson T; Yuan CS; Park K
    Biomaterials; 1995 Sep; 16(13):963-72. PubMed ID: 8580258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photografting of albumin onto dimethyldichlorosilane-coated glass.
    Tseng YC; Kim J; Park K
    J Biomater Appl; 1993 Jan; 7(3):233-49. PubMed ID: 8455134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.
    Hsu SH; Tang CM; Lin CC
    Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The minimum surface fibrinogen concentration necessary for platelet activation on dimethyldichlorosilane-coated glass.
    Park K; Mao FW; Park H
    J Biomed Mater Res; 1991 Mar; 25(3):407-20. PubMed ID: 2026644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.
    Balakrishnan B; Kumar DS; Yoshida Y; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(17):3495-502. PubMed ID: 15621239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion.
    Tanaka Y; Matsuo Y; Komiya T; Tsutsumi Y; Doi H; Yoneyama T; Hanawa T
    J Biomed Mater Res A; 2010 Jan; 92(1):350-8. PubMed ID: 19189389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of ultrahigh molecular weight polyethylene by the poly(ethylene glycol)-grafted method and its effect on the adsorption of proteins and the adhesion of blood platelets.
    Xia B; Xie M; Yang B
    J Biomed Mater Res A; 2013 Jan; 101(1):54-63. PubMed ID: 22807149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of cell and platelet adhesion to star-shaped 8-armed poly(ethylene glycol)-poly(L-lactide) block copolymer films.
    Nagahama K; Ohya Y; Ouchi T
    Macromol Biosci; 2006 Jun; 6(6):412-9. PubMed ID: 16741900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycol-grafted polystyrene particles.
    Meng F; Engbers GH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):49-58. PubMed ID: 15174108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers.
    Zdyrko B; Varshney SK; Luzinov I
    Langmuir; 2004 Aug; 20(16):6727-35. PubMed ID: 15274578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Albumin grafting on to polypropylene by thermal activation.
    Tseng YC; Mullins WM; Park K
    Biomaterials; 1993 Apr; 14(5):392-400. PubMed ID: 8507784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.
    Ito Y; Hasuda H; Sakuragi M; Tsuzuki S
    Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes.
    Xu ZK; Nie FQ; Qu C; Wan LS; Wu J; Yao K
    Biomaterials; 2005 Feb; 26(6):589-98. PubMed ID: 15282137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays.
    Schlapak R; Pammer P; Armitage D; Zhu R; Hinterdorfer P; Vaupel M; Frühwirth T; Howorka S
    Langmuir; 2006 Jan; 22(1):277-85. PubMed ID: 16378432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic interfacial properties of poly(ethylene glycol)-modified ferritin at the solid/liquid interface.
    Kumashiro Y; Ikezoe Y; Tamada K; Hara M
    J Phys Chem B; 2008 Jul; 112(28):8291-7. PubMed ID: 18570392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol).
    Pan J; Li G; Chen Z; Chen X; Zhu W; Xu K
    Biomaterials; 2009 Jun; 30(16):2975-84. PubMed ID: 19230967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone.
    Luan S; Zhao J; Yang H; Shi H; Jin J; Li X; Liu J; Wang J; Yin J; Stagnaro P
    Colloids Surf B Biointerfaces; 2012 May; 93():127-34. PubMed ID: 22264686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.