BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16131061)

  • 1. Improving glutamate microsensors by optimizing the composition of the redox hydrogel.
    Oldenziel WH; Westerink BH
    Anal Chem; 2005 Sep; 77(17):5520-8. PubMed ID: 16131061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of hydrogel-coated glutamate microsensors.
    Oldenziel WH; Dijkstra G; Cremers TI; Westerink BH
    Anal Chem; 2006 May; 78(10):3366-78. PubMed ID: 16689539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the reproducibility of hydrogel-coated glutamate microsensors by using an automated dipcoater.
    Oldenziel WH; Beukema W; Westerink BH
    J Neurosci Methods; 2004 Dec; 140(1-2):117-26. PubMed ID: 15589341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.
    Belay A; Collins A; Ruzgas T; Kissinger PT; Gorton L; Csöregi E
    J Pharm Biomed Anal; 1999 Feb; 19(1-2):93-105. PubMed ID: 10698571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon fibre-based microbiosensors for in vivo measurements of acetylcholine and choline.
    Schuvailo ON; Dzyadevych SV; El'skaya AV; Gautier-Sauvigné S; Csöregi E; Cespuglio R; Soldatkin AP
    Biosens Bioelectron; 2005 Jul; 21(1):87-94. PubMed ID: 15967355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the performance of glutamate microsensors by purification of ascorbate oxidase.
    Oldenziel WH; de Jong LA; Dijkstra G; Cremers TI; Westerink BH
    Anal Chem; 2006 Apr; 78(7):2456-60. PubMed ID: 16579635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-based microsensors for wireless chemical monitoring.
    Lei M; Baldi A; Nuxoll E; Siegel RA; Ziaie B
    Biomed Microdevices; 2009 Jun; 11(3):529-38. PubMed ID: 18335316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes.
    Cui HF; Ye JS; Zhang WD; Sheu FS
    Biosens Bioelectron; 2009 Feb; 24(6):1723-9. PubMed ID: 18951014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate.
    O'Neill RD; Chang SC; Lowry JP; McNeil CJ
    Biosens Bioelectron; 2004 Jun; 19(11):1521-8. PubMed ID: 15093225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors.
    Kulagina NV; Shankar L; Michael AC
    Anal Chem; 1999 Nov; 71(22):5093-100. PubMed ID: 10575963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo monitoring of extracellular glutamate in the brain with a microsensor.
    Oldenziel WH; Dijkstra G; Cremers TI; Westerink BH
    Brain Res; 2006 Nov; 1118(1):34-42. PubMed ID: 16956598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of choline in the extracellular fluid of brain tissue with amperometric microsensors.
    Garguilo MG; Michael AC
    Anal Chem; 1994 Sep; 66(17):2621-9. PubMed ID: 7943733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-based, flexible glutamate and lactate microsensors for in vivo applications.
    Weltin A; Kieninger J; Enderle B; Gellner AK; Fritsch B; Urban GA
    Biosens Bioelectron; 2014 Nov; 61():192-9. PubMed ID: 24880657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolithographic fabrication of poly(ethylene glycol) microstructures for hydrogel-based microreactors and spatially addressed microarrays.
    Baek TJ; Kim NH; Choo J; Lee EK; Seong GH
    J Microbiol Biotechnol; 2007 Nov; 17(11):1826-32. PubMed ID: 18092467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring extracellular glutamate in hippocampal slices with a microsensor.
    Oldenziel WH; van der Zeyden M; Dijkstra G; Ghijsen WE; Karst H; Cremers TI; Westerink BH
    J Neurosci Methods; 2007 Feb; 160(1):37-44. PubMed ID: 16978703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system.
    Shi G; Yamamoto K; Zhou T; Xu F; Kato T; Ji-ye J; Jin L
    Electrophoresis; 2003 Sep; 24(18):3266-72. PubMed ID: 14518055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amperometric microsensors for monitoring choline in the extracellular fluid of brain.
    Garguilo MG; Michael AC
    J Neurosci Methods; 1996 Dec; 70(1):73-82. PubMed ID: 8982984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous detection of the release of glutamate and nitric oxide from adherently growing cells using an array of glutamate and nitric oxide selective electrodes.
    Castillo J; Isik S; Blöchl A; Pereira-Rodrigues N; Bedioui F; Csöregi E; Schuhmann W; Oni J
    Biosens Bioelectron; 2005 Feb; 20(8):1559-65. PubMed ID: 15626609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing.
    Raj CR; Chakraborty S
    Biosens Bioelectron; 2006 Dec; 22(5):700-6. PubMed ID: 16584882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amperometric and impedimetric characterization of a glutamate biosensor based on Nafion and a methyl viologen modified glassy carbon electrode.
    Maalouf R; Chebib H; Saïkali Y; Vittori O; Sigaud M; Jaffrezic-Renault N
    Biosens Bioelectron; 2007 May; 22(11):2682-8. PubMed ID: 17161943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.