BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 16131082)

  • 1. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry.
    Choël M; Deboudt K; Osán J; Flament P; Van Grieken R
    Anal Chem; 2005 Sep; 77(17):5686-92. PubMed ID: 16131082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of quantitative procedures for X-ray microanalysis of environmental particles.
    Choël M; Deboudt K; Flament P
    Microsc Res Tech; 2007 Nov; 70(11):996-1002. PubMed ID: 17661395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An expert system for chemical speciation of individual particles using low-Z particle electron probe X-ray microanalysis data.
    Ro CU; Kim H; Van Grieken R
    Anal Chem; 2004 Mar; 76(5):1322-7. PubMed ID: 14987088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuated total reflectance FT-IR imaging and quantitative energy dispersive-electron probe X-ray microanalysis techniques for single particle analysis of atmospheric aerosol particles.
    Ryu J; Ro CU
    Anal Chem; 2009 Aug; 81(16):6695-707. PubMed ID: 19603773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.
    Liu Y; Cain JP; Wang H; Laskin A
    J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.
    Jung HJ; Malek MA; Ryu J; Kim B; Song YC; Kim H; Ro CU
    Anal Chem; 2010 Jul; 82(14):6193-202. PubMed ID: 20568714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical speciation of individual airborne particles by the combined use of quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.
    Song YC; Ryu J; Malek MA; Jung HJ; Ro CU
    Anal Chem; 2010 Oct; 82(19):7987-98. PubMed ID: 20672829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge.
    Moffet RC; Henn T; Laskin A; Gilles MK
    Anal Chem; 2010 Oct; 82(19):7906-14. PubMed ID: 20879799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle mineralogy of Chinese soil particles by the combined use of low-Z particle electron probe X-ray microanalysis and attenuated total reflectance-FT-IR imaging techniques.
    Malek MA; Kim B; Jung HJ; Song YC; Ro CU
    Anal Chem; 2011 Oct; 83(20):7970-7. PubMed ID: 21894905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mass concentrations for a powdered SRM sample using a quantitative single particle analysis.
    Khan MS; Hwang H; Kim H; Ro CU
    Anal Chim Acta; 2008 Jun; 619(1):14-9. PubMed ID: 18539167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning electron microanalysis and analytical challenges of mapping elements in urban atmospheric particles.
    Conny JM; Norris GA
    Environ Sci Technol; 2011 Sep; 45(17):7380-6. PubMed ID: 21774494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force and scanning electron microscopy of atmospheric particles.
    Barkay Z; Teller A; Ganor E; Levin Z; Shapira Y
    Microsc Res Tech; 2005 Oct; 68(2):107-14. PubMed ID: 16228985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated gunshot residue particle search and characterization.
    Tillman WL
    J Forensic Sci; 1987 Jan; 32(1):62-71. PubMed ID: 3819690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative energy dispersive X-ray analysis of submicrometric particles using a scanning electron microscope.
    Paoletti L; Bruni BM; Gianfagna A; Mazziotti-Tagliani S; Pacella A
    Microsc Microanal; 2011 Oct; 17(5):710-7. PubMed ID: 21892993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.
    Hu T; Lee S; Cao J; Chow JC; Watson JG; Ho K; Ho W; Rong B; An Z
    Sci Total Environ; 2009 Oct; 407(20):5319-27. PubMed ID: 19640566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of collecting substrates on the single-particle characterization of real atmospheric aerosols.
    Maskey S; Choël M; Kang S; Hwang H; Kim H; Ro CU
    Anal Chim Acta; 2010 Jan; 658(2):120-7. PubMed ID: 20103084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool.
    Kotula PG; Keenan MR; Michael JR
    Microsc Microanal; 2003 Feb; 9(1):1-17. PubMed ID: 12597783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity.
    Liu Y; Gibson ER; Cain JP; Wang H; Grassian VH; Laskin A
    J Phys Chem A; 2008 Feb; 112(7):1561-71. PubMed ID: 18232670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Criminalistic identification of PGM-containing products of mining and metallurgical companies.
    Perelygin A; Kuchkin A; Kharkov N; Moskvina T
    Forensic Sci Int; 2008 Jan; 174(1):12-5. PubMed ID: 17507191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of particulate burden in lung tissue.
    Mastin JP; Stettler LE; Shelburne JD
    Scanning Microsc; 1988 Sep; 2(3):1613-29. PubMed ID: 3059480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.