These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16131200)

  • 1. Making thiamin work faster: acid-promoted separation of carbon dioxide.
    Hu Q; Kluger R
    J Am Chem Soc; 2005 Sep; 127(35):12242-3. PubMed ID: 16131200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes.
    Kluger R; Ikeda G; Hu Q; Cao P; Drewry J
    J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyzing separation of carbon dioxide in thiamin diphosphate-promoted decarboxylation.
    Kluger R; Rathgeber S
    FEBS J; 2008 Dec; 275(24):6089-100. PubMed ID: 19016847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragmentation of the conjugate base of 2-(1-hydroxybenzyl)thiamin: does benzoylformate decarboxylase prevent orbital overlap to avoid it?
    Hu Q; Kluger R
    J Am Chem Soc; 2004 Jan; 126(1):68-9. PubMed ID: 14709063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of intermediates in benzoylformate decarboxylase: avoiding the path to destruction.
    Hu Q; Kluger R
    J Am Chem Soc; 2002 Dec; 124(50):14858-9. PubMed ID: 12475322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing Protonation and Halide Elimination as a Probe of the Character of Thiamin-Derived Reactive Intermediates.
    Bielecki M; Howe GW; Kluger R
    Biochemistry; 2019 Aug; 58(34):3566-3571. PubMed ID: 31385510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope effect, mechanism, and origin of catalysis in the decarboxylation of mandelylthiamin.
    Gonzalez-James OM; Singleton DA
    J Am Chem Soc; 2010 May; 132(20):6896-7. PubMed ID: 20433168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-stabilized nucleophilic addition of thiamin to a ketone provides an efficient route to mandelylthiamin, a critical pre-decarboxylation intermediate.
    Bielecki M; Howe GW; Kluger R
    Bioorg Chem; 2015 Oct; 62():124-9. PubMed ID: 26333207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-enhanced decarboxylation of the covalent intermediate in benzoylformate decarboxylase--Desolvation or acid catalysis?
    Kluger R; Yu D
    Bioorg Chem; 2006 Dec; 34(6):337-44. PubMed ID: 16996103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversibility and diffusion in mandelythiamin decarboxylation. Searching dynamical effects in decarboxylation reactions.
    Roca M; Pascual-Ahuir JL; Tuñón I
    J Am Chem Soc; 2012 Jun; 134(25):10509-14. PubMed ID: 22668129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal return of carbon dioxide in decarboxylation: catalysis of separation and 12C/13C kinetic isotope effects.
    Mundle SO; Rathgeber S; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R
    J Am Chem Soc; 2009 Aug; 131(33):11638-9. PubMed ID: 19642680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues.
    Weiss PM; Garcia GA; Kenyon GL; Cleland WW; Cook PF
    Biochemistry; 1988 Mar; 27(6):2197-205. PubMed ID: 3378056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetic characterization and X-ray structure of a putative benzoylformate decarboxylase from M. smegmatis highlights the difficulties in the functional annotation of ThDP-dependent enzymes.
    Andrews FH; Horton JD; Shin D; Yoon HJ; Logsdon MG; Malik AM; Rogers MP; Kneen MM; Suh SW; McLeish MJ
    Biochim Biophys Acta; 2015 Aug; 1854(8):1001-9. PubMed ID: 25936776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.
    Chakraborty S; Nemeria N; Yep A; McLeish MJ; Kenyon GL; Jordan F
    Biochemistry; 2008 Mar; 47(12):3800-9. PubMed ID: 18314961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiamin diphosphate in biological chemistry: applications in biocatalysis, coenzyme analogues as mechanistic probes and natural derivatives of thiamin.
    Tittmann K
    FEBS J; 2009 Jun; 276(11):2893. PubMed ID: 19490095
    [No Abstract]   [Full Text] [Related]  

  • 18. Decarboxylation, CO2 and the reversion problem.
    Kluger R
    Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic enantioselective arylation of glyoxylate with arylsilanes: practical synthesis of optically active mandelic acid derivatives.
    Aikawa K; Hioki Y; Mikami K
    Chem Asian J; 2010 Nov; 5(11):2346-50. PubMed ID: 20839278
    [No Abstract]   [Full Text] [Related]  

  • 20. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO
    Zambri MA; Kluger R
    J Am Chem Soc; 2024 Jan; 146(2):1403-1409. PubMed ID: 38176895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.