These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16132265)

  • 41. Balanced synaptic currents underlie low-frequency oscillations in the subiculum.
    Royzen F; Williams S; Fernandez FR; White JA
    Hippocampus; 2019 Dec; 29(12):1178-1189. PubMed ID: 31301195
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Postsynaptic blockade of inhibitory postsynaptic currents by plasmin in CA1 pyramidal cells of rat hippocampus.
    Mizutani A; Tanaka T; Saito H; Matsuki N
    Brain Res; 1997 Jun; 761(1):93-6. PubMed ID: 9247070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential effects of novel wasp toxin on rat hippocampal interneurons.
    Miyawaki T; Tsubokawa H; Yokota H; Oguro K; Konno K; Masuzawa T; Kawai N
    Neurosci Lett; 2002 Aug; 328(1):25-8. PubMed ID: 12123851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early establishment of multiple release site connectivity between interneurons and pyramidal neurons in the developing hippocampus.
    Groc L; Gustafsson B; Hanse E
    Eur J Neurosci; 2003 May; 17(9):1873-80. PubMed ID: 12752787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Slow synchronized bursts of inhibitory postsynaptic currents (0.1-0.3 Hz) by cholinergic stimulation in the rat frontal cortex in vitro.
    Kondo S; Kawaguchi Y
    Neuroscience; 2001; 107(4):551-60. PubMed ID: 11720779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast voltage-sensitive dye imaging of excitatory and inhibitory synaptic transmission in the rat granular retrosplenial cortex.
    Nixima K; Okanoya K; Ichinohe N; Kurotani T
    J Neurophysiol; 2017 Sep; 118(3):1784-1799. PubMed ID: 28701546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen-Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons.
    Povysheva N; Nigam A; Brisbin AK; Johnson JW; Barrionuevo G
    Neuroscience; 2019 Aug; 412():72-82. PubMed ID: 31152933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network.
    Polepalli JS; Wu H; Goswami D; Halpern CH; Südhof TC; Malenka RC
    Nat Neurosci; 2017 Feb; 20(2):219-229. PubMed ID: 28067903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Effects of Realistic Synaptic Distribution and 3D Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells and Inhibitory Neurons.
    Gulyás AI; Freund TF; Káli S
    Front Neural Circuits; 2016; 10():88. PubMed ID: 27877113
    [No Abstract]   [Full Text] [Related]  

  • 50. Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons.
    Hestrin S
    Neuron; 1993 Dec; 11(6):1083-91. PubMed ID: 7506044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct demonstration of functional disconnection by anoxia of inhibitory interneurons from excitatory inputs in rat hippocampus.
    Congar P; Khazipov R; Ben-Ari Y
    J Neurophysiol; 1995 Jan; 73(1):421-6. PubMed ID: 7714586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice.
    Traub RD; Pais I; Bibbig A; Lebeau FE; Buhl EH; Garner H; Monyer H; Whittington MA
    J Neurophysiol; 2005 Aug; 94(2):1225-35. PubMed ID: 15728773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling of evoked field potentials in hippocampal CA1 area describes their dependence on NMDA and GABA receptors.
    Sargsyan AR; Papatheodoropoulos C; Kostopoulos GK
    J Neurosci Methods; 2001 Jan; 104(2):143-53. PubMed ID: 11164240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of excitability by extrasynaptic GABA(A) receptors.
    Walker MC; Semyanov A
    Results Probl Cell Differ; 2008; 44():29-48. PubMed ID: 17671772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced infragranular and supragranular synaptic input onto layer 5 pyramidal neurons in a rat model of cortical dysplasia.
    Brill J; Huguenard JR
    Cereb Cortex; 2010 Dec; 20(12):2926-38. PubMed ID: 20338974
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asynchronous inputs and NMDA conductances predict excitatory responses in the cortical-cA1 pathway of the hippocampus.
    Longden KD; Willshaw DJ
    Network; 2007 Dec; 18(4):299-325. PubMed ID: 18360937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Input normalization by global feedforward inhibition expands cortical dynamic range.
    Pouille F; Marin-Burgin A; Adesnik H; Atallah BV; Scanziani M
    Nat Neurosci; 2009 Dec; 12(12):1577-85. PubMed ID: 19881502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
    Homayoun H; Moghaddam B
    J Neurosci; 2007 Oct; 27(43):11496-500. PubMed ID: 17959792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different states of synaptic vesicle priming explain target cell type-dependent differences in neurotransmitter release.
    Aldahabi M; Neher E; Nusser Z
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2322550121. PubMed ID: 38657053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slower spontaneous excitatory postsynaptic currents in spiny versus aspiny hilar neurons.
    Livsey CT; Vicini S
    Neuron; 1992 Apr; 8(4):745-55. PubMed ID: 1314622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.