These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16132357)

  • 1. Prediction of pK(a) for neutral and basic drugs based on radial basis function Neural networks and the heuristic method.
    Luan F; Ma W; Zhang H; Zhang X; Liu M; Hu Z; Fan B
    Pharm Res; 2005 Sep; 22(9):1454-60. PubMed ID: 16132357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Quantitative structure activity relationship models based on heuristic method and gene expression programming for the prediction of the pK(a) values of sulfa drugs].
    Li YQ; Si HZ; Xiao YL; Liu CH; Xia CC; Li K; Qi YX
    Yao Xue Xue Bao; 2009 May; 44(5):486-90. PubMed ID: 19618723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-lambda(max) relationship study on flavones by heuristic method and radial basis function neural network.
    Liu H; Wen Y; Luan F; Gao Y; Li X
    Anal Chim Acta; 2009 Sep; 649(1):52-61. PubMed ID: 19664462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate quantitative structure-property relationship model of mobilities of peptides in capillary zone electrophoresis.
    Ma W; Luan F; Zhang H; Zhang X; Liu M; Hu Z; Fan B
    Analyst; 2006 Nov; 131(11):1254-60. PubMed ID: 17066195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods.
    Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B
    Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of quantitative structure-mobility relationship of carboxylic and sulphonic acids in capillary electrophoresis.
    Xue C; Liu H; Yao X; Liu M; Hu Z; Fan B
    J Chromatogr A; 2004 Sep; 1048(2):233-43. PubMed ID: 15481261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSPR analysis of air-to-blood distribution of volatile organic compounds.
    Luan F; Liu HT; Ma WP; Fan BT
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):731-9. PubMed ID: 18067958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship.
    Luan F; Liu H; Gao Y; Li Q; Zhang X; Guo Y
    J Colloid Interface Sci; 2009 Aug; 336(2):773-9. PubMed ID: 19439317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools.
    Xu X; Luan F; Liu H; Cheng J; Zhang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):353-61. PubMed ID: 21930420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals.
    Luan F; Ma W; Zhang X; Zhang H; Liu M; Hu Z; Fan BT
    Chemosphere; 2006 May; 63(7):1142-53. PubMed ID: 16307788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of retention times for a large set of pesticides or toxicants based on support vector machine and the heuristic method.
    Li X; Luan F; Si H; Hu Z; Liu M
    Toxicol Lett; 2007 Dec; 175(1-3):136-44. PubMed ID: 18024009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machine and the heuristic method to predict the solubility of hydrocarbons in electrolyte.
    Ma W; Zhang X; Luan F; Zhang H; Zhang R; Liu M; Hu Z; Fan BT
    J Phys Chem A; 2005 Apr; 109(15):3485-92. PubMed ID: 16833686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of polar surface area of drug molecules: a QSPR approach.
    Noorizadeh H; Farmany A; Noorizadeh M; Kohzadi M
    Drug Test Anal; 2013 Apr; 5(4):222-7. PubMed ID: 21539000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure activity relationship model for predicting the depletion percentage of skin allergic chemical substances of glutathione.
    Si H; Wang T; Zhang K; Duan YB; Yuan S; Fu A; Hu Z
    Anal Chim Acta; 2007 May; 591(2):255-64. PubMed ID: 17481417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the baseline toxicity of non-polar narcotic chemical mixtures by QSAR approach.
    Luan F; Xu X; Liu H; Cordeiro MN
    Chemosphere; 2013 Feb; 90(6):1980-6. PubMed ID: 23177708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between Multi-Linear- and Radial-Basis-Function-Neural-Network-Based QSPR Models for The Prediction of The Critical Temperature, Critical Pressure and Acentric Factor of Organic Compounds.
    Banchero M; Manna L
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29880730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.
    Li Y; You G; Jia B; Si H; Yao X
    Biomed Res Int; 2014; 2014():210672. PubMed ID: 24971318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine.
    Liu HX; Xue CX; Zhang RS; Yao XJ; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(6):1979-86. PubMed ID: 15554667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative structure-property relationship for predicting drug solubility in PEG 400/water cosolvent systems.
    Rytting E; Lentz KA; Chen XQ; Qian F; Venkatesh S
    Pharm Res; 2004 Feb; 21(2):237-44. PubMed ID: 15032304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.