BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16132821)

  • 1. Solution structure of the second PDZ domain of the neuronal adaptor X11alpha and its interaction with the C-terminal peptide of the human copper chaperone for superoxide dismutase.
    Duquesne AE; Ruijter Md; Brouwer J; Drijfhout JW; Nabuurs SB; Spronk CA; Vuister GW; Ubbink M; Canters GW
    J Biomol NMR; 2005 Jul; 32(3):209-18. PubMed ID: 16132821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuronal adaptor protein X11alpha interacts with the copper chaperone for SOD1 and regulates SOD1 activity.
    McLoughlin DM; Standen CL; Lau KF; Ackerley S; Bartnikas TP; Gitlin JD; Miller CC
    J Biol Chem; 2001 Mar; 276(12):9303-7. PubMed ID: 11115513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the second domain of the human copper chaperone for superoxide dismutase.
    Lamb AL; Wernimont AK; Pufahl RA; O'Halloran TV; Rosenzweig AC
    Biochemistry; 2000 Feb; 39(7):1589-95. PubMed ID: 10677207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone.
    Lamb AL; Torres AS; O'Halloran TV; Rosenzweig AC
    Nat Struct Biol; 2001 Sep; 8(9):751-5. PubMed ID: 11524675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic aspects of hSOD1 maturation from the solution structure of Cu(I) -loaded hCCS domain 1 and analysis of disulfide-free hSOD1 mutants.
    Banci L; Cantini F; Kozyreva T; Rubino JT
    Chembiochem; 2013 Sep; 14(14):1839-44. PubMed ID: 23625804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase.
    Stasser JP; Siluvai GS; Barry AN; Blackburn NJ
    Biochemistry; 2007 Oct; 46(42):11845-56. PubMed ID: 17902702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer's disease.
    Dingwall C
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):571-3. PubMed ID: 17511654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1.
    Schmidt PJ; Kunst C; Culotta VC
    J Biol Chem; 2000 Oct; 275(43):33771-6. PubMed ID: 10944535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Extended Biological Functions of the Human Copper Chaperone of Superoxide Dismutase 1.
    Ge Y; Wang L; Li D; Zhao C; Li J; Liu T
    Protein J; 2019 Aug; 38(4):463-471. PubMed ID: 31140034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.
    Fetherolf MM; Boyd SD; Taylor AB; Kim HJ; Wohlschlegel JA; Blackburn NJ; Hart PJ; Winge DR; Winkler DD
    J Biol Chem; 2017 Jul; 292(29):12025-12040. PubMed ID: 28533431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase.
    Schmidt PJ; Rae TD; Pufahl RA; Hamma T; Strain J; O'Halloran TV; Culotta VC
    J Biol Chem; 1999 Aug; 274(34):23719-25. PubMed ID: 10446130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An essential role of N-terminal domain of copper chaperone in the enzymatic activation of Cu/Zn-superoxide dismutase.
    Fukuoka M; Tokuda E; Nakagome K; Wu Z; Nagano I; Furukawa Y
    J Inorg Biochem; 2017 Oct; 175():208-216. PubMed ID: 28780408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase.
    Casareno RL; Waggoner D; Gitlin JD
    J Biol Chem; 1998 Sep; 273(37):23625-8. PubMed ID: 9726962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface.
    Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ
    Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The copper chaperone for superoxide dismutase.
    Culotta VC; Klomp LW; Strain J; Casareno RL; Krems B; Gitlin JD
    J Biol Chem; 1997 Sep; 272(38):23469-72. PubMed ID: 9295278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis.
    Chu CC; Lee WC; Guo WY; Pan SM; Chen LJ; Li HM; Jinn TL
    Plant Physiol; 2005 Sep; 139(1):425-36. PubMed ID: 16126858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the copper chaperone for superoxide dismutase.
    Lamb AL; Wernimont AK; Pufahl RA; Culotta VC; O'Halloran TV; Rosenzweig AC
    Nat Struct Biol; 1999 Aug; 6(8):724-9. PubMed ID: 10426947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, gene expression, and evolution of primate copper chaperone for superoxide dismutase.
    Fukuhara R; Kageyama T
    Gene; 2013 Mar; 516(1):69-75. PubMed ID: 23235117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase.
    Rae TD; Schmidt PJ; Pufahl RA; Culotta VC; O'Halloran TV
    Science; 1999 Apr; 284(5415):805-8. PubMed ID: 10221913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterodimer formation between superoxide dismutase and its copper chaperone.
    Lamb AL; Torres AS; O'Halloran TV; Rosenzweig AC
    Biochemistry; 2000 Dec; 39(48):14720-7. PubMed ID: 11101286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.