These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16133086)

  • 1. Prediction of glass transition temperatures of OLED materials using topological indices.
    Xu J; Chen B
    J Mol Model; 2005 Dec; 12(1):24-33. PubMed ID: 16133086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wuantitative structure-property relationship study of the glass transition temperature of OLED materials.
    Yin S; Shuai Z; Wang Y
    J Chem Inf Comput Sci; 2003; 43(3):970-7. PubMed ID: 12767156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general QSPR model for the prediction of theta (lower critical solution temperature) in polymer solutions with topological indices.
    Xu J; Liu L; Xu W; Zhao S; Zuo D
    J Mol Graph Model; 2007 Jul; 26(1):352-9. PubMed ID: 17296321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Glass Transition Temperatures for Polymeric Coating Materials: Application of QSPR Mixture-based Approach.
    Petrosyan LS; Sizochenko N; Leszczynski J; Rasulev B
    Mol Inform; 2019 Aug; 38(8-9):e1800150. PubMed ID: 30945811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relativity study of the topological index of methylalkane structures and chromatographic retention index].
    Xiang Z; Liang Y; Hu Q
    Se Pu; 2005 Mar; 23(2):117-22. PubMed ID: 16013551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of glass transition temperature (T(g)) of some compounds in organic electroluminescent devices with their molecular properties.
    Kim YS; Kim JH; Kim JS; No KT
    J Chem Inf Comput Sci; 2002; 42(1):75-81. PubMed ID: 11855969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of boiling points of organic compounds by QSPR tools.
    Dai YM; Zhu ZP; Cao Z; Zhang YF; Zeng JL; Li X
    J Mol Graph Model; 2013 Jul; 44():113-9. PubMed ID: 23792208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSPR modelling for prediction of glass transition temperature of diverse polymers.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2018 Dec; 29(12):935-956. PubMed ID: 30392386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A QSPR treatment for the thermal stabilities of second-order NLO chromophore molecules.
    Xu J; Guo B; Chen B; Zhang Q
    J Mol Model; 2005 Dec; 12(1):65-75. PubMed ID: 16240094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.
    Xu J; Zhu L; Fang D; Liu L; Bai Z; Wang L; Xu W
    SAR QSAR Environ Res; 2013 Jan; 24(1):47-59. PubMed ID: 23066906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility.
    Zhou D; Alelyunas Y; Liu R
    J Chem Inf Model; 2008 May; 48(5):981-7. PubMed ID: 18465850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors.
    Modarresi H; Dearden JC; Modarress H
    J Chem Inf Model; 2006; 46(2):930-6. PubMed ID: 16563024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using combined computational techniques to predict the glass transition temperatures of aromatic polybenzoxazines.
    Mhlanga P; Wan Hassan WA; Hamerton I; Howlin BJ
    PLoS One; 2013; 8(1):e53367. PubMed ID: 23326419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors.
    Xu J; Zhang H; Wang L; Liang G; Wang L; Shen X; Xu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):239-47. PubMed ID: 20381412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom, atom-type, and total linear indices of the "molecular pseudograph's atom adjacency matrix": application to QSPR/QSAR studies of organic compounds.
    Ponce YM; Garit JA; Torrens F; Zaldivar VR; Castro EA
    Molecules; 2004 Dec; 9(12):1100-23. PubMed ID: 18007507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks.
    Mattioni BE; Jurs PC
    J Chem Inf Comput Sci; 2002; 42(2):232-40. PubMed ID: 11911692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reparameterized Austin Model 1 for quantitative structure-property relationships in liquid media.
    Dobchev DA; Karelson M
    J Mol Model; 2006 Mar; 12(4):503-12. PubMed ID: 16404615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superaugmented eccentric distance sum connectivity indices: novel highly discriminating topological descriptors for QSAR/QSPR.
    Gupta M; Gupta S; Dureja H; Madan AK
    Chem Biol Drug Des; 2012 Jan; 79(1):38-52. PubMed ID: 22014074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.