These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. I. Coulomb and hybrid integrals. Lesiuk M; Moszynski R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063318. PubMed ID: 25615232 [TBL] [Abstract][Full Text] [Related]
3. Comment on "numerical treatment of two-center overlap integrals". Harris FE J Mol Model; 2007 Sep; 13(9):949-50. PubMed ID: 17611785 [TBL] [Abstract][Full Text] [Related]
4. Calculation of molecular integrals over Slater-type orbitals using recurrence relations for overlap integrals and basic one-center Coulomb integrals. Guseinov I; Mamedov B; Rzaeva A J Mol Model; 2002 Apr; 8(4):145-9. PubMed ID: 12111393 [TBL] [Abstract][Full Text] [Related]
5. Strategies for an efficient implementation of the Gauss-Bessel quadrature for the evaluation of multicenter integral over STFs. Duret S; Bouferguene A; Safouhi H J Comput Chem; 2008 Apr; 29(6):934-44. PubMed ID: 17999382 [TBL] [Abstract][Full Text] [Related]
6. Benchmark values for molecular three-center integrals arising in the Dirac equation. Bağcı A; Hoggan PE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043301. PubMed ID: 26565358 [TBL] [Abstract][Full Text] [Related]
7. Tailored Gauss quadratures, a promising route for an efficient evaluation of multicenter integrals over B functions. Rebabti A; Ghomari R; Bouferguene A J Chem Phys; 2009 May; 130(20):204103. PubMed ID: 19485433 [TBL] [Abstract][Full Text] [Related]
8. Benchmark values for molecular two-electron integrals arising from the Dirac equation. Bağcı A; Hoggan PE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023303. PubMed ID: 25768632 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of multicenter one-electron integrals of noninteger u screened Coulomb type potentials and their derivatives over noninteger n Slater orbitals. Guseinov II; Mamedov BA J Chem Phys; 2004 Jul; 121(4):1649-54. PubMed ID: 15260714 [TBL] [Abstract][Full Text] [Related]
10. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals. Lesiuk M; Moszynski R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063319. PubMed ID: 25615233 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of two-center Coulomb and hybrid integrals over complete orthonormal sets of Ψα-ETO using auxiliary functions. Guseinov II; Sahin E J Mol Model; 2011 Apr; 17(4):851-6. PubMed ID: 20577890 [TBL] [Abstract][Full Text] [Related]
12. Addition theorems for Slater-type orbitals in momentum space and their application to three-center overlap integrals. Guseinov II J Mol Model; 2005 Mar; 11(2):124-7. PubMed ID: 15668760 [TBL] [Abstract][Full Text] [Related]
13. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials. Guseinov I J Mol Model; 2003 Jun; 9(3):190-4. PubMed ID: 12750966 [TBL] [Abstract][Full Text] [Related]
14. Performance of numerical approximation on the calculation of overlap integrals with noninteger Slater-type orbitals. Bağcı A; Hoggan PE Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053307. PubMed ID: 25353914 [TBL] [Abstract][Full Text] [Related]
15. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions. Sandberg JA; Rinkevicius Z J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469 [TBL] [Abstract][Full Text] [Related]
16. Efficiency of the algorithms for the calculation of Slater molecular integrals in polyatomic molecules. Fernández Rico J; López R; Ema I; Ramírez G J Comput Chem; 2004 Dec; 25(16):1987-94. PubMed ID: 15473010 [TBL] [Abstract][Full Text] [Related]
17. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals. Kurashige Y; Nakajima T; Hirao K J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700 [TBL] [Abstract][Full Text] [Related]