These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16133339)

  • 1. Impact of membrane fatty acid composition on the uncoupling sensitivity of the energy conservation of Comamonas testosteroni ATCC 17454.
    Loffhagen N; Härtig C; Harms H
    Appl Microbiol Biotechnol; 2006 May; 70(5):618-24. PubMed ID: 16133339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe.
    McDonough VM; Roth TM
    Antonie Van Leeuwenhoek; 2004 Nov; 86(4):349-54. PubMed ID: 15702387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli].
    Li ZJ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energization of Comamonas testosteroni ATCC 17454 for indicating toxic effects of chlorophenoxy herbicides.
    Loffhagen N; Härtig C; Babel W
    Arch Environ Contam Toxicol; 2003 Oct; 45(3):317-23. PubMed ID: 14674583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils.
    Thakor N; Trivedi U; Patel KC
    Bioresour Technol; 2005 Nov; 96(17):1843-50. PubMed ID: 16084364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by growth conditions: consequences of resistance to quaternary ammonium compounds.
    Dubois-Brissonnet F; Malgrange C; Guérin-Méchin L; Heyd B; Leveau JY
    Microbios; 2001; 106(414):97-110. PubMed ID: 11506066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids.
    Loffhagen N; Härtig C; Babel W
    Biosci Biotechnol Biochem; 2004 Feb; 68(2):317-23. PubMed ID: 14981294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription.
    Viegas CA; Cabral MG; Teixeira MC; Neumann G; Heipieper HJ; Sá-Correia I
    Biochem Biophys Res Commun; 2005 Apr; 330(1):271-8. PubMed ID: 15781260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fatty acid composition on the sensitivity of membrane functions to ethanol in Escherichia coli.
    Eaton LC; Tedder TF; Ingram LO
    Subst Alcohol Actions Misuse; 1982; 3(1-2):77-87. PubMed ID: 6753194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of salinity and temperature on fatty acid composition of Pseudomonas fluorescens GNP-OHP-3 membrane].
    Pucci GN; Härtig C; Pucci OH
    Rev Argent Microbiol; 2004; 36(1):6-15. PubMed ID: 15174743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids.
    Unell M; Kabelitz N; Jansson JK; Heipieper HJ
    FEMS Microbiol Lett; 2007 Jan; 266(2):138-43. PubMed ID: 17233723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane topology of aspartate:alanine antiporter AspT from Comamonas testosteroni.
    Fujiki T; Nanatani K; Nishitani K; Yagi K; Ohnishi F; Yoneyama H; Uchida T; Nakajima T; Abea K
    J Biochem; 2007 Jan; 141(1):85-91. PubMed ID: 17158863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of fatty acids on model cholesterol/phospholipid membranes.
    Hac-Wydro K; Wydro P
    Chem Phys Lipids; 2007 Nov; 150(1):66-81. PubMed ID: 17651712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.
    Alvarez-Ordóñez A; Fernández A; López M; Bernardo A
    Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311.
    Huflejt ME; Tremolieres A; Pineau B; Lang JK; Hatheway J; Packer L
    Plant Physiol; 1990; 94(4):1512-21. PubMed ID: 11537468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation.
    Hoffman DR; Okon JL; Sandrin TR
    Chemosphere; 2005 May; 59(7):919-27. PubMed ID: 15823325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells.
    Azevedo-Martins AK; Monteiro AP; Lima CL; Lenzen S; Curi R
    Toxicol In Vitro; 2006 Oct; 20(7):1106-13. PubMed ID: 16644178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fatty acid composition of Wautersia eutropha lipids under conditions of active polyhydroxyalkanoates synthesis].
    Kalacheva GS; Volova TG
    Mikrobiologiia; 2007; 76(5):608-14. PubMed ID: 18069320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low pH-induced membrane fatty acid alterations in oral bacteria.
    Fozo EM; Kajfasz JK; Quivey RG
    FEMS Microbiol Lett; 2004 Sep; 238(2):291-5. PubMed ID: 15358413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.