These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16134947)

  • 1. Modifications to the tetracaine scaffold produce cyclic nucleotide-gated channel blockers with widely varying efficacies.
    Strassmaier T; Uma R; Ghatpande AS; Bandyopadhyay T; Schaffer M; Witte J; McDougal PG; Brown RL; Karpen JW
    J Med Chem; 2005 Sep; 48(18):5805-12. PubMed ID: 16134947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiply charged tetracaine derivative blocks cyclic nucleotide-gated channels at subnanomolar concentrations.
    Ghatpande AS; Uma R; Karpen JW
    Biochemistry; 2003 Jan; 42(2):265-70. PubMed ID: 12525153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic nucleotide-gated channel block by hydrolysis-resistant tetracaine derivatives.
    Andrade AL; Melich K; Whatley GG; Kirk SR; Karpen JW
    J Med Chem; 2011 Jul; 54(13):4904-12. PubMed ID: 21634421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of tetracaine block of cyclic nucleotide-gated channels.
    Fodor AA; Gordon SE; Zagotta WN
    J Gen Physiol; 1997 Jan; 109(1):3-14. PubMed ID: 8997661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels.
    McCabe SL; Pelosi DM; Tetreault M; Miri A; Nguitragool W; Kovithvathanaphong P; Mahajan R; Zimmerman AL
    J Gen Physiol; 2004 May; 123(5):521-31. PubMed ID: 15078915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block of cyclic nucleotide-gated channels by tetracaine derivatives: role of apolar interactions at two distinct locations.
    Strassmaier T; Kirk SR; Banerji T; Karpen JW
    Bioorg Med Chem Lett; 2008 Jan; 18(2):645-9. PubMed ID: 18055205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Ca2+-calmodulin-dependent inhibition of rod cyclic nucleotide-gated channels measured by patch-clamp fluorometry.
    Trudeau MC; Zagotta WN
    J Gen Physiol; 2004 Sep; 124(3):211-23. PubMed ID: 15314069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of a single residue in the S2-S3 loop of CNG channels alters the gating properties and sensitivity to inhibitors.
    Crary JI; Dean DM; Maroof F; Zimmerman AL
    J Gen Physiol; 2000 Dec; 116(6):769-80. PubMed ID: 11099346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetracaine reports a conformational change in the pore of cyclic nucleotide-gated channels.
    Fodor AA; Black KD; Zagotta WN
    J Gen Physiol; 1997 Nov; 110(5):591-600. PubMed ID: 9348330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent block of CNG channels by dequalinium.
    Rosenbaum T; Gordon-Shaag A; Islas LD; Cooper J; Munari M; Gordon SE
    J Gen Physiol; 2004 Mar; 123(3):295-304. PubMed ID: 14981138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subunit interactions in coordination of Ni2+ in cyclic nucleotide-gated channels.
    Gordon SE; Zagotta WN
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10222-6. PubMed ID: 7479756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of cyclic nucleotide-gated ion channels by ultraviolet light.
    Middendorf TR; Aldrich RW; Baylor DA
    J Gen Physiol; 2000 Aug; 116(2):227-52. PubMed ID: 10919869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors.
    Picones A; Korenbrot JI
    Biophys J; 1995 Jul; 69(1):120-7. PubMed ID: 7545443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dequalinium: a novel, high-affinity blocker of CNGA1 channels.
    Rosenbaum T; Islas LD; Carlson AE; Gordon SE
    J Gen Physiol; 2003 Jan; 121(1):37-47. PubMed ID: 12508052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of calcium/calmodulin inhibition of rod cyclic nucleotide-gated channels.
    Trudeau MC; Zagotta WN
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8424-9. PubMed ID: 12048242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating of cyclic nucleotide-gated (CNGA1) channels by cGMP jumps and depolarizing voltage steps.
    Nache V; Kusch J; Hagen V; Benndorf K
    Biophys J; 2006 May; 90(9):3146-54. PubMed ID: 16473910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels.
    Gordon SE; Oakley JC; Varnum MD; Zagotta WN
    Biochemistry; 1996 Apr; 35(13):3994-4001. PubMed ID: 8672432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intersubunit interaction regulates trafficking of rod cyclic nucleotide-gated channels and is disrupted in an inherited form of blindness.
    Trudeau MC; Zagotta WN
    Neuron; 2002 Apr; 34(2):197-207. PubMed ID: 11970862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of modulation by internal protons of cyclic nucleotide-gated channels cloned from sensory receptor cells.
    Gavazzo P; Picco C; Menini A
    Proc Biol Sci; 1997 Aug; 264(1385):1157-65. PubMed ID: 9308192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
    Mazzolini M; Punta M; Torre V
    Biophys J; 2002 Dec; 83(6):3283-95. PubMed ID: 12496096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.