BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 16135224)

  • 1. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2.
    Velázquez F; Parro V; de Lorenzo V
    Mol Microbiol; 2005 Sep; 57(6):1557-69. PubMed ID: 16135224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes.
    Velázquez F; de Lorenzo V; Valls M
    Environ Microbiol; 2006 Apr; 8(4):591-602. PubMed ID: 16584471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways.
    Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A
    Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0.
    Aranda-Olmedo I; Ramos JL; Marqués S
    Appl Environ Microbiol; 2005 Aug; 71(8):4191-8. PubMed ID: 16085802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime in Pseudomonas putida mt-2 exposed to m-xylene.
    Silva-Rocha R; de Lorenzo V
    Mol Microbiol; 2012 Oct; 86(1):199-211. PubMed ID: 22845424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma54-promoter Pu to the response regulator PprA.
    Vitale E; Milani A; Renzi F; Galli E; Rescalli E; de Lorenzo V; Bertoni G
    Mol Microbiol; 2008 Aug; 69(3):698-713. PubMed ID: 19138193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2.
    Kim J; Pérez-Pantoja D; Silva-Rocha R; Oliveros JC; de Lorenzo V
    Environ Microbiol; 2016 Oct; 18(10):3327-3341. PubMed ID: 26373670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways.
    Aemprapa S; Williams PA
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1387-1396. PubMed ID: 9611813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators.
    Ramos JL; Marqués S; Timmis KN
    Annu Rev Microbiol; 1997; 51():341-73. PubMed ID: 9343354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation.
    Lee K; Ryu EK; Choi KS; Cho MC; Jeong JJ; Choi EN; Lee SO; Yoon DY; Hwang I; Kim CK
    J Microbiol; 2006 Apr; 44(2):192-9. PubMed ID: 16728956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene.
    Silva-Rocha R; de Jong H; Tamames J; de Lorenzo V
    BMC Syst Biol; 2011 Nov; 5():191. PubMed ID: 22078029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organisation of the tmb catabolic operons of Pseudomonas putida TMB and evolutionary relationship with the xyl operons of the TOL plasmid pWW0.
    Favaro R; Bernasconi C; Passini N; Bertoni G; Bestetti G; Galli E; Dehò G
    Gene; 1996 Dec; 182(1-2):189-93. PubMed ID: 8982087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular Architecture of the
    Kim J; Goñi-Moreno A; de Lorenzo V
    mBio; 2021 Feb; 12(1):. PubMed ID: 33622725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions.
    Muñoz R; Hernández M; Segura A; Gouveia J; Rojas A; Ramos JL; Villaverde S
    Appl Microbiol Biotechnol; 2009 May; 83(1):189-98. PubMed ID: 19277642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53.
    Gallegos MT; Williams PA; Ramos JL
    J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake.
    Kasai Y; Inoue J; Harayama S
    J Bacteriol; 2001 Nov; 183(22):6662-6. PubMed ID: 11673437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440.
    Renzi F; Rescalli E; Galli E; Bertoni G
    Environ Microbiol; 2010 Jan; 12(1):254-63. PubMed ID: 19788653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rpoS gene regulates OP2, an operon for the lower pathway of xylene catabolism on the TOL plasmid, and the stress response in Pseudomonas putida mt-2.
    Miura K; Inouye S; Nakazawa A
    Mol Gen Genet; 1998 Jul; 259(1):72-8. PubMed ID: 9738882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways.
    Marqués S; Ramos JL
    Mol Microbiol; 1993 Sep; 9(5):923-9. PubMed ID: 7934920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.