BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 1613546)

  • 1. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET.
    Grafton ST; Mazziotta JC; Presty S; Friston KJ; Frackowiak RS; Phelps ME
    J Neurosci; 1992 Jul; 12(7):2542-8. PubMed ID: 1613546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice.
    van Mier H; Tempel LW; Perlmutter JS; Raichle ME; Petersen SE
    J Neurophysiol; 1998 Oct; 80(4):2177-99. PubMed ID: 9772270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of regional brain activation associated with different forms of motor learning.
    Ghilardi M; Ghez C; Dhawan V; Moeller J; Mentis M; Nakamura T; Antonini A; Eidelberg D
    Brain Res; 2000 Jul; 871(1):127-45. PubMed ID: 10882792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements--a PET study.
    Kawashima R; Matsumura M; Sadato N; Naito E; Waki A; Nakamura S; Matsunami K; Fukuda H; Yonekura Y
    Eur J Neurosci; 1998 Jul; 10(7):2254-60. PubMed ID: 9749754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor sequence learning with the nondominant left hand. A PET functional imaging study.
    Grafton ST; Hazeltine E; Ivry RB
    Exp Brain Res; 2002 Oct; 146(3):369-78. PubMed ID: 12232693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow.
    Grafton ST; Woods RP; Mazziotta JC
    Exp Brain Res; 1993; 95(1):172-6. PubMed ID: 8405250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human functional anatomy of visually guided finger movements.
    Grafton ST; Mazziotta JC; Woods RP; Phelps ME
    Brain; 1992 Apr; 115 ( Pt 2)():565-87. PubMed ID: 1606482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional imaging of procedural motor learning: Relating cerebral blood flow with individual subject performance.
    Grafton ST; Woods RP; Tyszka M
    Hum Brain Mapp; 1994; 1(3):221-34. PubMed ID: 24578042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study.
    Fox PT; Fox JM; Raichle ME; Burde RM
    J Neurophysiol; 1985 Aug; 54(2):348-69. PubMed ID: 3875696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-subject variability of cerebral activations in acquiring a motor skill: a study with positron emission tomography.
    Schlaug G; Knorr U; Seitz R
    Exp Brain Res; 1994; 98(3):523-34. PubMed ID: 8056072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects.
    Jahanshahi M; Jenkins IH; Brown RG; Marsden CD; Passingham RE; Brooks DJ
    Brain; 1995 Aug; 118 ( Pt 4)():913-33. PubMed ID: 7655888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement.
    Kawashima R; Yamada K; Kinomura S; Yamaguchi T; Matsui H; Yoshioka S; Fukuda H
    Brain Res; 1993 Sep; 623(1):33-40. PubMed ID: 8221091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term adaptation to dynamics of reaching movements: a PET study.
    Nezafat R; Shadmehr R; Holcomb HH
    Exp Brain Res; 2001 Sep; 140(1):66-76. PubMed ID: 11500799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory control of competing motor memories.
    Shadmehr R; Holcomb HH
    Exp Brain Res; 1999 May; 126(2):235-51. PubMed ID: 10369146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor subcircuits mediating the control of movement velocity: a PET study.
    Turner RS; Grafton ST; Votaw JR; Delong MR; Hoffman JM
    J Neurophysiol; 1998 Oct; 80(4):2162-76. PubMed ID: 9772269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study.
    Honda M; Deiber MP; Ibáñez V; Pascual-Leone A; Zhuang P; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2159-73. PubMed ID: 9827775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual feedback about time estimation is related to a right hemisphere activation measured by PET.
    Brunia CH; de Jong BM; van den Berg-Lenssen MM; Paans AM
    Exp Brain Res; 2000 Feb; 130(3):328-37. PubMed ID: 10706432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.