BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16135543)

  • 1. Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells.
    Sánchez-Armáss S; Sennoune SR; Maiti D; Ortega F; Martínez-Zaguilán R
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C524-38. PubMed ID: 16135543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of an Na+/H+ exchanger in mouse keratinocytes measured by the novel pH-sensitive fluorochrome SNARF-calcein.
    van Hooijdonk CA; Colbers RM; Piek J; van Erp PE
    Cell Prolif; 1997; 30(8-9):351-63. PubMed ID: 9501924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosolic pH measurements in single cardiac myocytes using carboxy-seminaphthorhodafluor-1.
    Blank PS; Silverman HS; Chung OY; Hogue BA; Stern MD; Hansford RG; Lakatta EG; Capogrossi MC
    Am J Physiol; 1992 Jul; 263(1 Pt 2):H276-84. PubMed ID: 1636765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pronounced cytoplasmic pH gradients are not required for tip growth in plant and fungal cells.
    Parton RM; Fischer S; Malhó R; Papasouliotis O; Jelitto TC; Leonard T; Read ND
    J Cell Sci; 1997 May; 110 ( Pt 10)():1187-98. PubMed ID: 9191043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of both Na/H and bicarbonate-dependent exchange is required to prevent recovery of intracellular pH in single cardiomyocytes exposed to metabolic stress.
    Serrano OK; Jovanovic A; Terzic A
    Biosci Rep; 1999 Apr; 19(2):99-107. PubMed ID: 10888472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of intracellular pH in phytoplankton using the fluorescent probe, SNARF, with detection by fluorescence spectroscopy.
    Golda-VanEeckhoutte RL; Roof LT; Needoba JA; Peterson TD
    J Microbiol Methods; 2018 Sep; 152():109-118. PubMed ID: 30077695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry.
    Seksek O; Bolard J
    J Cell Sci; 1996 Jan; 109 ( Pt 1)():257-62. PubMed ID: 8834810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endosomal accumulation of pH indicator dyes delivered as acetoxymethyl esters.
    Slayman CL; Moussatos VV; Webb WW
    J Exp Biol; 1994 Nov; 196():419-38. PubMed ID: 7823037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of intracellular pH gradients by identified Na/H exchanger isoforms and a short-chain fatty acid.
    Gonda T; Maouyo D; Rees SE; Montrose MH
    Am J Physiol; 1999 Jan; 276(1):G259-70. PubMed ID: 9887003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for redistribution-associated intracellular pK shifts of the pH-sensitive fluoroprobe carboxy-SNARF-1.
    Opitz N; Merten E; Acker H
    Pflugers Arch; 1994 Jun; 427(3-4):332-42. PubMed ID: 8072854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular pH regulation of CA1 neurons in Na(+)/H(+) isoform 1 mutant mice.
    Yao H; Ma E; Gu XQ; Haddad GG
    J Clin Invest; 1999 Sep; 104(5):637-45. PubMed ID: 10487778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computed tomography-based spectral imaging for fluorescence microscopy.
    Ford BK; Volin CE; Murphy SM; Lynch RM; Descour MR
    Biophys J; 2001 Feb; 80(2):986-93. PubMed ID: 11159465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pH regulatory mechanism in human atrial myocardium: functional evidence for Na(+)/H(+) exchanger and Na(+)/HCO(3)(-) symporter.
    Loh SH; Chen WH; Chiang CH; Tsai CS; Lee GC; Jin JS; Cheng TH; Chen JJ
    J Biomed Sci; 2002; 9(3):198-205. PubMed ID: 12065894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms.
    Hunter RC; Beveridge TJ
    Appl Environ Microbiol; 2005 May; 71(5):2501-10. PubMed ID: 15870340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of Mitochondrial pH Using SNARF-1.
    Ramshesh VK; Lemasters JJ
    Methods Mol Biol; 2018; 1782():351-356. PubMed ID: 29851011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen ion dynamics in human red blood cells.
    Swietach P; Tiffert T; Mauritz JM; Seear R; Esposito A; Kaminski CF; Lew VL; Vaughan-Jones RD
    J Physiol; 2010 Dec; 588(Pt 24):4995-5014. PubMed ID: 20962000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH regulation and bicarbonate transport of isolated porcine submucosal glands.
    Hug MJ; Bridges RJ
    JOP; 2001 Jul; 2(4 Suppl):274-9. PubMed ID: 11875271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous analysis of intracellular pH and Ca²⁺ from cell populations.
    Martinez-Zaguilan R; Tompkins LS; Gillies RJ; Lynch RM
    Methods Mol Biol; 2013; 937():253-71. PubMed ID: 23007592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitation of intracellular H(+) ion mobility by CO(2)/HCO(3)(-) in rabbit ventricular myocytes is regulated by carbonic anhydrase.
    Spitzer KW; Skolnick RL; Peercy BE; Keener JP; Vaughan-Jones RD
    J Physiol; 2002 May; 541(Pt 1):159-67. PubMed ID: 12015427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in intracellular Na+ and pH in rat heart during ischemia: role of Na+/H+ exchanger.
    Park CO; Xiao XH; Allen DG
    Am J Physiol; 1999 May; 276(5):H1581-90. PubMed ID: 10330242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.