BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16136170)

  • 1. Proteomic analysis of childhood leukemia.
    Hegedus CM; Gunn L; Skibola CF; Zhang L; Shiao R; Fu S; Dalmasso EA; Metayer C; Dahl GV; Buffler PA; Smith MT
    Leukemia; 2005 Oct; 19(10):1713-8. PubMed ID: 16136170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of proteomics between acute myeloid leukemia and acute lymphoid leukemia].
    Xiao P; Zeng YY; Nie YF; Lin W
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Dec; 19(6):1353-6. PubMed ID: 22169282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of human acute leukemia cells: insight into their classification.
    Cui JW; Wang J; He K; Jin BF; Wang HX; Li W; Kang LH; Hu MR; Li HY; Yu M; Shen BF; Wang GJ; Zhang XM
    Clin Cancer Res; 2004 Oct; 10(20):6887-96. PubMed ID: 15501966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of childhood de novo acute myeloid leukemia and myelodysplastic syndrome/AML: correlation to molecular and cytogenetic analyses.
    Braoudaki M; Tzortzatou-Stathopoulou F; Anagnostopoulos AK; Papathanassiou C; Vougas K; Karamolegou K; Tsangaris GT
    Amino Acids; 2011 Mar; 40(3):943-51. PubMed ID: 20711619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low frequency of activity of P-glycoprotein (P-170) in acute lymphoblastic leukemia compared to acute myeloid leukemia.
    Ludescher C; Eisterer W; Hilbe W; Gotwald M; Hofmann J; Zabernigg A; Cianfriglia M; Thaler J
    Leukemia; 1995 Feb; 9(2):350-6. PubMed ID: 7869774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Proteomics analysis of bone marrow cells of acute myeloid leukemia M2a and prognostic significance thereof].
    Tian S; Meng FY; Tang JM
    Zhonghua Yi Xue Za Zhi; 2007 Feb; 87(8):538-41. PubMed ID: 17459203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of protein profile classification model and screening of proteomic signature of acute leukemia.
    Xu Y; Zhuo J; Duan Y; Shi B; Chen X; Zhang X; Xiao L; Lou J; Huang R; Zhang Q; Du X; Li M; Wang D; Shi D
    Int J Clin Exp Pathol; 2014; 7(9):5569-81. PubMed ID: 25337199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Issues of processing and multiple testing of SELDI-TOF MS proteomic data.
    Birkner MD; Hubbard AE; van der Laan MJ; Skibola CF; Hegedus CM; Smith MT
    Stat Appl Genet Mol Biol; 2006; 5():Article11. PubMed ID: 16646865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Childhood and adolescent lymphoid and myeloid leukemia.
    Pui CH; Schrappe M; Ribeiro RC; Niemeyer CM
    Hematology Am Soc Hematol Educ Program; 2004; ():118-45. PubMed ID: 15561680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics strategy based on liquid-phase IEF and 2-D DIGE: application to bone marrow mesenchymal progenitor cells.
    Seshi B
    Proteomics; 2007 Jun; 7(12):1984-99. PubMed ID: 17516591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leptin receptor in childhood acute leukemias.
    Gorska E; Popko K; Wasik M
    Adv Exp Med Biol; 2013; 756():155-61. PubMed ID: 22836631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner.
    Braoudaki M; Lambrou GI; Vougas K; Karamolegou K; Tsangaris GT; Tzortzatou-Stathopoulou F
    J Hematol Oncol; 2013 Jul; 6():52. PubMed ID: 23849470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential protein analysis of lymphocytes between children with acute lymphoblastic leukemia and healthy children.
    Wang D; Lv YQ; Liu YF; Du XJ; Li B
    Leuk Lymphoma; 2013 Feb; 54(2):381-6. PubMed ID: 22812402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular IL-4, IL-10, and IFN-gamma levels of leukemic cells and bone marrow T cells in acute leukemia.
    Park HH; Kim M; Lee BH; Lim J; Kim Y; Lee EJ; Min WS; Kang CS; Kim WI; Shim SI; Han K
    Ann Clin Lab Sci; 2006; 36(1):7-15. PubMed ID: 16501231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia.
    Wuchter C; Leonid K; Ruppert V; Schrappe M; Büchner T; Schoch C; Haferlach T; Harbott J; Ratei R; Dörken B; Ludwig WD
    Haematologica; 2000 Jul; 85(7):711-21. PubMed ID: 10897123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia.
    Dehghan-Nayeri N; Eshghi P; Pour KG; Rezaei-Tavirani M; Omrani MD; Gharehbaghian A
    Cancer Chemother Pharmacol; 2017 Jul; 80(1):177-185. PubMed ID: 28585036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of new markers discriminating between myeloid and lymphoid acute leukemia.
    Haouas H; Haouas S; Uzan G; Hafsia A
    Hematology; 2010 Aug; 15(4):193-203. PubMed ID: 20670477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [microRNA expression in childhood acute granulocytic leukemia and its subtypes].
    Luo XQ; Xu L; Ke ZY; Huang LB; Zhang XL; Zhang LD
    Zhonghua Zhong Liu Za Zhi; 2011 Nov; 33(11):831-5. PubMed ID: 22335948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. hTERT promoter methylation and telomere length in childhood acute lymphoblastic leukemia: associations with immunophenotype and cytogenetic subgroup.
    Borssén M; Cullman I; Norén-Nyström U; Sundström C; Porwit A; Forestier E; Roos G
    Exp Hematol; 2011 Dec; 39(12):1144-51. PubMed ID: 21914494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WT1 protein expression in childhood acute leukemia.
    Kerst G; Bergold N; Gieseke F; Coustan-Smith E; Lang P; Kalinova M; Handgretinger R; Trka J; Müller I
    Am J Hematol; 2008 May; 83(5):382-6. PubMed ID: 18161786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.