BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16136170)

  • 21. Molecular characterization of acute leukemias by use of microarray technology.
    Kohlmann A; Schoch C; Schnittger S; Dugas M; Hiddemann W; Kern W; Haferlach T
    Genes Chromosomes Cancer; 2003 Aug; 37(4):396-405. PubMed ID: 12800151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Identification of new markers for childhood acute lymphoblastic leukemia by MALDI-TOF-MS].
    Wang D; Lu YQ; Liu YF; Su SF; Li B
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2012 Dec; 20(6):1365-9. PubMed ID: 23257434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of N-CAM (CD56) on acute leukemia cells: relationship with disease characteristics and outcome.
    Thomas X; Vila L; Campos L; Sabido O; Archimbaud E
    Leuk Lymphoma; 1995 Oct; 19(3-4):295-300. PubMed ID: 8535222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction and validation of a bone marrow tissue microarray.
    Zimpfer A; Schönberg S; Lugli A; Agostinelli C; Pileri SA; Went P; Dirnhofer S
    J Clin Pathol; 2007 Jan; 60(1):57-61. PubMed ID: 16698953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Analysis of the different proteomes between the acute leukemia cells and normal white blood cells].
    Cui JW; Wang GJ; Li W; Wang J; Zhang XM
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2006 Apr; 14(2):201-7. PubMed ID: 16638180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Definition of acute biphenotypic leukemia.
    Matutes E; Morilla R; Farahat N; Carbonell F; Swansbury J; Dyer M; Catovsky D
    Haematologica; 1997; 82(1):64-6. PubMed ID: 9107085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Modern approach to diagnosis and therapy in childhood leukemias].
    Hasanbegović E
    Med Arh; 2004; 58(1):59-60. PubMed ID: 15017909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Label-free quantitative proteomics reveals differentially expressed proteins in high risk childhood acute lymphoblastic leukemia.
    Xu G; Li Z; Wang L; Chen F; Chi Z; Gu M; Li S; Wu D; Miao J; Zhang Y; Hao L; Fan Y
    J Proteomics; 2017 Jan; 150():1-8. PubMed ID: 27569049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leukaemia in the young child.
    Chessells JM
    Br J Cancer Suppl; 1992 Aug; 18():S54-7. PubMed ID: 1503927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MDM2 and p53 in childhood acute lymphoblastic leukemia: higher expression in childhood leukemias with poor prognosis compared to long-term survivors.
    Gustafsson B; Axelsson B; Gustafsson B; Christensson B; Winiarski J
    Pediatr Hematol Oncol; 2001 Dec; 18(8):497-508. PubMed ID: 11764099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunohistochemical detection of VEGF in the bone marrow of patients with acute myeloid leukemia. Correlation between VEGF expression and the FAB category.
    Ghannadan M; Wimazal F; Simonitsch I; Sperr WR; Mayerhofer M; Sillaber C; Hauswirth AW; Gadner H; Chott A; Horny HP; Lechner K; Valent P
    Am J Clin Pathol; 2003 May; 119(5):663-71. PubMed ID: 12760284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic Profile of Lymphoid Leukemia.
    Almaiman AA
    J Coll Physicians Surg Pak; 2018 Feb; 28(2):133-145. PubMed ID: 29394974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberrant AML1 gene expression in the diagnosis of childhood leukemias not characterized by AML1-involved cytogenetic abnormalities.
    Adamaki M; Vlahopoulos S; Lambrou GI; Papavassiliou AG; Moschovi M
    Tumour Biol; 2017 Mar; 39(3):1010428317694308. PubMed ID: 28349830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasma soluble interleukin-2 receptor (sIL-2R) levels in patients with acute leukemia.
    Moon Y; Kim Y; Kim M; Lim J; Kang CS; Kim WI; Shim SI; Chung NG; Park YH; Min WS; Han K
    Ann Clin Lab Sci; 2004; 34(4):410-5. PubMed ID: 15648782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells.
    Kanderova V; Kuzilkova D; Stuchly J; Vaskova M; Brdicka T; Fiser K; Hrusak O; Lund-Johansen F; Kalina T
    Mol Cell Proteomics; 2016 Apr; 15(4):1246-61. PubMed ID: 26785729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of multidrug resistance (MDR) proteins and in vitro drug resistance in acute leukemias.
    Fazlina N; Maha A; Jamal R; Zarina AL; Cheong SK; Hamidah H; Ainoon O; Zulkifli SZ; Hamidah NH
    Hematology; 2007 Feb; 12(1):33-7. PubMed ID: 17364990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. C-kit receptor (CD117) expression in acute leukemia.
    Valverde LR; Matutes E; Farahat N; Heffernan A; Owusu-Ankomah K; Morilla R; Catovsky D
    Ann Hematol; 1996 Jan; 72(1):11-5. PubMed ID: 8605274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased midkine gene expression in childhood B-precursor acute lymphoblastic leukemia.
    Hidaka H; Yagasaki H; Takahashi Y; Hama A; Nishio N; Tanaka M; Yoshida N; Villalobos IB; Wang Y; Xu Y; Horibe K; Chen S; Kadomatsu K; Kojima S
    Leuk Res; 2007 Aug; 31(8):1045-51. PubMed ID: 17267033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute leukemia: subtype discovery and prediction of outcome by gene expression profiling.
    Downing JR
    Verh Dtsch Ges Pathol; 2003; 87():66-71. PubMed ID: 16888896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved outcome with T-cell-depleted bone marrow transplantation for acute leukemia.
    Aversa F; Terenzi A; Carotti A; Felicini R; Jacucci R; Zei T; Latini P; Aristei C; Santucci A; Martelli MP; Cunningham I; Reisner Y; Martelli MF
    J Clin Oncol; 1999 May; 17(5):1545-50. PubMed ID: 10334542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.