These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 16136314)

  • 61. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals.
    Xia D; Qiu W; Wang X; Liu J
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940702
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heterotrophic cultivation of microalgae for pigment production: A review.
    Hu J; Nagarajan D; Zhang Q; Chang JS; Lee DJ
    Biotechnol Adv; 2018; 36(1):54-67. PubMed ID: 28947090
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Potential of sponges and microalgae for marine biotechnology.
    Wijffels RH
    Trends Biotechnol; 2008 Jan; 26(1):26-31. PubMed ID: 18037175
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carotenoids in Microalgae.
    Henríquez V; Escobar C; Galarza J; Gimpel J
    Subcell Biochem; 2016; 79():219-37. PubMed ID: 27485224
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production of carotenoids by microalgae: achievements and challenges.
    Varela JC; Pereira H; Vila M; León R
    Photosynth Res; 2015 Sep; 125(3):423-36. PubMed ID: 25921207
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Towards a new avenue for producing therapeutic proteins: Microalgae as a tempting green biofactory.
    Dehghani J; Adibkia K; Movafeghi A; Maleki-Kakelar H; Saeedi N; Omidi Y
    Biotechnol Adv; 2020; 40():107499. PubMed ID: 31862234
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.
    Bae S; Park S; Kim J; Choi JS; Kim KH; Kwon D; Jin E; Park I; Kim DH; Seo TS
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27554-61. PubMed ID: 26584003
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation.
    Solovchenko A; Khozin-Goldberg I
    Biotechnol Lett; 2013 Nov; 35(11):1745-52. PubMed ID: 23801125
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids.
    Minhas AK; Hodgson P; Barrow CJ; Adholeya A
    Front Microbiol; 2016; 7():546. PubMed ID: 27199903
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hosting the plant cells in vitro: recent trends in bioreactors.
    Georgiev MI; Eibl R; Zhong JJ
    Appl Microbiol Biotechnol; 2013 May; 97(9):3787-800. PubMed ID: 23504061
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments.
    Liu C; Hu B; Cheng Y; Guo Y; Yao W; Qian H
    Bioresour Technol; 2021 Oct; 337():125398. PubMed ID: 34139560
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.
    Hamilton ML; Warwick J; Terry A; Allen MJ; Napier JA; Sayanova O
    PLoS One; 2015; 10(12):e0144054. PubMed ID: 26658738
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.
    Poojary MM; Barba FJ; Aliakbarian B; Donsì F; Pataro G; Dias DA; Juliano P
    Mar Drugs; 2016 Nov; 14(11):. PubMed ID: 27879659
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biofuel production from microalgae as feedstock: current status and potential.
    Han SF; Jin WB; Tu RJ; Wu WM
    Crit Rev Biotechnol; 2015 Jun; 35(2):255-68. PubMed ID: 24641484
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biotechnological exploitation of microalgae.
    Gangl D; Zedler JA; Rajakumar PD; Martinez EM; Riseley A; Włodarczyk A; Purton S; Sakuragi Y; Howe CJ; Jensen PE; Robinson C
    J Exp Bot; 2015 Dec; 66(22):6975-90. PubMed ID: 26400987
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae.
    Sun XM; Geng LJ; Ren LJ; Ji XJ; Hao N; Chen KQ; Huang H
    Bioresour Technol; 2018 Feb; 250():868-876. PubMed ID: 29174352
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biotechnological production of lutein and its applications.
    Fernández-Sevilla JM; Acién Fernández FG; Molina Grima E
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):27-40. PubMed ID: 20091305
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biochemical Characterization of Human Anti-Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum.
    Vanier G; Hempel F; Chan P; Rodamer M; Vaudry D; Maier UG; Lerouge P; Bardor M
    PLoS One; 2015; 10(10):e0139282. PubMed ID: 26437211
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biomass from microalgae: the potential of domestication towards sustainable biofactories.
    Benedetti M; Vecchi V; Barera S; Dall'Osto L
    Microb Cell Fact; 2018 Nov; 17(1):173. PubMed ID: 30414618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.