BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16136315)

  • 1. Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Müll Arg. plants.
    Blanc G; Baptiste C; Oliver G; Martin F; Montoro P
    Plant Cell Rep; 2006 Jan; 24(12):724-33. PubMed ID: 16136315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium.
    Montoro P; Rattana W; Pujade-Renaud V; Michaux-Ferrière N; Monkolsook Y; Kanthapura R; Adunsadthapong S
    Plant Cell Rep; 2003 Jul; 21(11):1095-102. PubMed ID: 12836004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg).
    Leclercq J; Lardet L; Martin F; Chapuset T; Oliver G; Montoro P
    Plant Cell Rep; 2010 May; 29(5):513-22. PubMed ID: 20306052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene.
    Jayashree R; Rekha K; Venkatachalam P; Uratsu SL; Dandekar AM; Kumari Jayasree P; Kala RG; Priya P; Sushma Kumari S; Sobha S; Ashokan MP; Sethuraj MR; Thulaseedharan A
    Plant Cell Rep; 2003 Oct; 22(3):201-9. PubMed ID: 14551734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rubber Tree (Hevea brasiliensis Muell. Arg).
    Venkatachalam P; Jayashree R; Rekha K; Sushmakumari S; Sobha S; Kumari Jayasree P; Kala RG; Thulaseedharan A
    Methods Mol Biol; 2006; 344():153-64. PubMed ID: 17033060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Müll. Arg.).
    Lardet L; Martin F; Dessailly F; Carron MP; Montoro P
    Plant Cell Rep; 2007 May; 26(5):559-69. PubMed ID: 17186244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of transgenic plants by Agrobacterium-mediated transformation of somatic embryos of juvenile and mature Quercus robur.
    Vidal N; Mallón R; Valladares S; Meijomín AM; Vieitez AM
    Plant Cell Rep; 2010 Dec; 29(12):1411-22. PubMed ID: 20972795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.
    Zhang T; Wu SJ
    Methods Mol Biol; 2012; 847():245-53. PubMed ID: 22351014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of transgenic Lolium temulentum plants by Agrobacterium tumefaciens-mediated transformation.
    Ge Y; Cheng X; Hopkins A; Wang ZY
    Plant Cell Rep; 2007 Jun; 26(6):783-9. PubMed ID: 17221228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.).
    Yang J; Bi HP; Fan WJ; Zhang M; Wang HX; Zhang P
    Plant Sci; 2011 Dec; 181(6):701-11. PubMed ID: 21958713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation.
    Tang W
    Plant Cell Rep; 2003 Feb; 21(6):555-62. PubMed ID: 12789430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons.
    Grant JE; Cooper PA; Dale TM
    Plant Cell Rep; 2004 Jul; 22(12):894-902. PubMed ID: 14986058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.).
    Bettany AJ; Dalton SJ; Timms E; Manderyck B; Dhanoa MS; Morris P
    Plant Cell Rep; 2003 Jan; 21(5):437-44. PubMed ID: 12789446
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Li M; Wang D; Long X; Hao Z; Lu Y; Zhou Y; Peng Y; Cheng T; Shi J; Chen J
    Front Plant Sci; 2022; 13():802128. PubMed ID: 35371158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over-expression of 3-hydroxy-3- methylglutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynthesis in rubber tree (Hevea brasiliensis Muell. Arg.).
    Jayashree R; Nazeem PA; Rekha K; Sreelatha S; Thulaseedharan A; Krishnakumar R; Kala RG; Vineetha M; Leda P; Jinu U; Venkatachalam P
    Plant Physiol Biochem; 2018 Jun; 127():414-424. PubMed ID: 29680705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of Agrobacterium tumefaciens in transformed conifers.
    Charity JA; Klimaszewska K
    Environ Biosafety Res; 2005; 4(3):167-77. PubMed ID: 16634222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro plant regeneration and genetic transformation of Dichanthium annulatum.
    Kumar J; Shukla SM; Bhat V; Gupta S; Gupta MG
    DNA Cell Biol; 2005 Nov; 24(11):670-9. PubMed ID: 16274291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens.
    Tang W; Sederoff R; Whetten R
    Planta; 2001 Oct; 213(6):981-9. PubMed ID: 11722135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infection of Embryonic Callus with
    Du D; Jin R; Guo J; Zhang F
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.