These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1613640)

  • 1. Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles.
    Tröster SD; Kreuter J
    J Microencapsul; 1992; 9(1):19-28. PubMed ID: 1613640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the surfactant concentration on the body distribution of nanoparticles.
    Araujo L; Löbenberg R; Kreuter J
    J Drug Target; 1999; 6(5):373-85. PubMed ID: 10342385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407.
    Müller RH; Maassen S; Weyhers H; Mehnert W
    J Drug Target; 1996; 4(3):161-70. PubMed ID: 8959488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vitro characterisation and biodistribution of some non-ionic surfactant coated liposomes in the rabbit.
    Khattab MA; Farr SJ; Taylor G; Kellaway IW
    J Drug Target; 1995; 3(1):39-49. PubMed ID: 7655819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of serum components with poly(methylmethacrylate) nanoparticles and the resulting body distribution after intravenous injection in rats.
    Borchard G; Kreuter J
    J Drug Target; 1993; 1(1):15-9. PubMed ID: 8069540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the copolymers poloxamer 407 and poloxamine 908 can affect the physical and biological properties of surface modified nanospheres.
    Neal JC; Stolnik S; Garnett MC; Davis SS; Illum L
    Pharm Res; 1998 Feb; 15(2):318-24. PubMed ID: 9523321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338).
    Illum L; Davis SS
    FEBS Lett; 1984 Feb; 167(1):79-82. PubMed ID: 6698206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption and excretion of the hydrophobic surfactant, 14C-poloxalene 2930, in the rat.
    Rodgers JB; Friday S; Bochenek WJ
    Drug Metab Dispos; 1984; 12(5):631-4. PubMed ID: 6149916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of poly(ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice.
    Fischer D; Osburg B; Petersen H; Kissel T; Bickel U
    Drug Metab Dispos; 2004 Sep; 32(9):983-92. PubMed ID: 15319340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery.
    Chen S; Li Y; Guo C; Wang J; Ma J; Liang X; Yang LR; Liu HZ
    Langmuir; 2007 Dec; 23(25):12669-76. PubMed ID: 17988160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single dose of intravenously injected poloxamine-coated long-circulating particles triggers macrophage clearance of subsequent doses in rats.
    Moghimi SM; Gray T
    Clin Sci (Lond); 1997 Oct; 93(4):371-9. PubMed ID: 9404230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body distribution of 75Se-radiolabeled silica nanoparticles covalently coated with omega-functionalized surfactants after intravenous injection in rats.
    Borchardt G; Brandriss S; Kreuter J; Margel S
    J Drug Target; 1994; 2(1):61-77. PubMed ID: 8069585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and elimination of coated polymethyl [2-14C]methacrylate nanoparticles after intravenous injection in rats.
    Leu D; Manthey B; Kreuter J; Speiser P; DeLuca PP
    J Pharm Sci; 1984 Oct; 73(10):1433-7. PubMed ID: 6502493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN).
    Göppert TM; Müller RH
    Eur J Pharm Biopharm; 2005 Aug; 60(3):361-72. PubMed ID: 15996577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations.
    Jung IK; Bae JW; Choi WS; Choi JH; Park KD
    J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles.
    He X; Nie H; Wang K; Tan W; Wu X; Zhang P
    Anal Chem; 2008 Dec; 80(24):9597-603. PubMed ID: 19007246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes.
    Chambers E; Mitragotri S
    J Control Release; 2004 Nov; 100(1):111-9. PubMed ID: 15491815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate).
    Bozukova D; Pagnoulle C; De Pauw-Gillet MC; Ruth N; Jérôme R; Jérôme C
    Langmuir; 2008 Jun; 24(13):6649-58. PubMed ID: 18503285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin coating by plasma polymerization applied to corneal contact lens.
    Yasuda H; Bumgarner MO; Marsh HC; Yamanashi BS; Devito DP; Wolbarsht ML; Reed JW; Bessler M; Landers MB; Hercules DM; Carver J
    J Biomed Mater Res; 1975 Nov; 9(6):629-43. PubMed ID: 1184610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of capillary electrophoresis capillaries by poly(hydroxyethyl methacrylate), poly(diethylene glycol monomethacrylate) and poly(triethylene glycol monomethacrylate).
    Strelec I; Pacáková V; Bosáková Z; Coufal P; Guryca V; Stulík K
    Electrophoresis; 2002 Feb; 23(4):528-35. PubMed ID: 11870760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.