BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 16137743)

  • 21. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.
    Makarenko VV; Ahmmed GU; Peng YJ; Khan SA; Nanduri J; Kumar GK; Fox AP; Prabhakar NR
    J Neurophysiol; 2016 Jan; 115(1):345-54. PubMed ID: 26561606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carotid body oxygen sensing and adaptation to hypoxia.
    López-Barneo J; Macías D; Platero-Luengo A; Ortega-Sáenz P; Pardal R
    Pflugers Arch; 2016 Jan; 468(1):59-70. PubMed ID: 26373853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of oxygen sensing in peripheral arterial chemoreceptors.
    Lahiri S; Rozanov C; Roy A; Storey B; Buerk DG
    Int J Biochem Cell Biol; 2001 Aug; 33(8):755-74. PubMed ID: 11404180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Possible Role of TRP Channels in Rat Glomus Cells.
    Kim I; Fite L; Donnelly DF; Kim JH; Carroll JL
    Adv Exp Med Biol; 2015; 860():227-32. PubMed ID: 26303485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane.
    Chang AJ
    J Appl Physiol (1985); 2017 Nov; 123(5):1335-1343. PubMed ID: 28819004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CO2/H(+) sensing: peripheral and central chemoreception.
    Lahiri S; Forster RE
    Int J Biochem Cell Biol; 2003 Oct; 35(10):1413-35. PubMed ID: 12818238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen-sensing by ion channels and mitochondrial function in carotid body glomus cells.
    López-Barneo J; Ortega-Sáenz P; Piruat JI; García-Fernández M
    Novartis Found Symp; 2006; 272():54-64; discussion 64-72, 131-40. PubMed ID: 16686429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP inhibits the hypoxia response in type I cells of rat carotid bodies.
    Xu J; Xu F; Tse FW; Tse A
    J Neurochem; 2005 Mar; 92(6):1419-30. PubMed ID: 15748160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The metabolic hypothesis revisited.
    Rozanov C; Roy A; Mokashi A; Osanai S; Daudu P; Storey B; Lahiri S
    Adv Exp Med Biol; 2000; 475():397-404. PubMed ID: 10849679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story.
    Dehne N; Brüne B
    Antioxid Redox Signal; 2014 Jan; 20(2):339-52. PubMed ID: 22794181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen sensing by the carotid body: is it all just rotten eggs?
    Kemp PJ; Telezhkin V
    Antioxid Redox Signal; 2014 Feb; 20(5):794-804. PubMed ID: 23682865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular mechanisms of oxygen chemoreception in the carotid body.
    Gonzalez C; Lopez-Lopez JR; Obeso A; Perez-Garcia MT; Rocher A
    Respir Physiol; 1995 Dec; 102(2-3):137-47. PubMed ID: 8904006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: an involvement of constitutive and inducible nitric oxide synthases.
    Ye JS; Tipoe GL; Fung PC; Fung ML
    Pflugers Arch; 2002 May; 444(1-2):178-85. PubMed ID: 11976930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. K+ currents of glomus cells and chemosensory functions of carotid body.
    Donnelly DF
    Respir Physiol; 1999 Apr; 115(2):151-60. PubMed ID: 10385029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single cell transcriptome analysis of mouse carotid body glomus cells.
    Zhou T; Chien MS; Kaleem S; Matsunami H
    J Physiol; 2016 Aug; 594(15):4225-51. PubMed ID: 26940531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia.
    López-Barneo J; González-Rodríguez P; Gao L; Fernández-Agüera MC; Pardal R; Ortega-Sáenz P
    Am J Physiol Cell Physiol; 2016 Apr; 310(8):C629-42. PubMed ID: 26764048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation.
    López-Barneo J; Ortega-Sáenz P; González-Rodríguez P; Fernández-Agüera MC; Macías D; Pardal R; Gao L
    Mol Aspects Med; 2016; 47-48():90-108. PubMed ID: 26709054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia.
    Peng YJ; Yuan G; Ramakrishnan D; Sharma SD; Bosch-Marce M; Kumar GK; Semenza GL; Prabhakar NR
    J Physiol; 2006 Dec; 577(Pt 2):705-16. PubMed ID: 16973705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constitutive Expression of Hif2α Confers Acute O
    Colinas O; Moreno-Domínguez A; Ortega-Sáenz P; López-Barneo J
    Adv Exp Med Biol; 2023; 1427():153-162. PubMed ID: 37322346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rat carotid body chemosensory discharge and glomus cell HIF-1 alpha expression in vitro: regulation by a common oxygen sensor.
    Roy A; Baby SM; Wilson DF; Lahiri S
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R829-36. PubMed ID: 17475674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.