These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 16137942)
1. Differential responses of silver birch (Betula pendula) ecotypes to short-day photoperiod and low temperature. Li C; Welling A; Puhakainen T; Viherä-Aarnio A; Ernstsen A; Junttila O; Heino P; Palva ET Tree Physiol; 2005 Dec; 25(12):1563-9. PubMed ID: 16137942 [TBL] [Abstract][Full Text] [Related]
2. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Li C; Junttila O; Heino P; Palva ET Tree Physiol; 2003 May; 23(7):481-7. PubMed ID: 12670802 [TBL] [Abstract][Full Text] [Related]
3. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). Welling A; Rinne P; Viherä-Aarnio A; Kontunen-Soppela S; Heino P; Palva ET J Exp Bot; 2004 Feb; 55(396):507-16. PubMed ID: 14739271 [TBL] [Abstract][Full Text] [Related]
4. The minimum temperature for budburst in Betula depends on the state of dormancy. Junttila O; Hänninen H Tree Physiol; 2012 Mar; 32(3):337-45. PubMed ID: 22391009 [TBL] [Abstract][Full Text] [Related]
5. Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Puhakainen T; Li C; Boije-Malm M; Kangasjärvi J; Heino P; Palva ET Plant Physiol; 2004 Dec; 136(4):4299-307. PubMed ID: 15563624 [TBL] [Abstract][Full Text] [Related]
6. Critical night length for bud set and its variation in two photoperiodic ecotypes of Betula pendula. Viherä-Aarnio A; Häkkinen R; Junttila O Tree Physiol; 2006 Aug; 26(8):1013-8. PubMed ID: 16651250 [TBL] [Abstract][Full Text] [Related]
7. Cold acclimation threshold induction temperatures of switchgrass ecotypes grown under a long and short photoperiod. Willick IR; Lowry DB Physiol Plant; 2022 Nov; 174(6):e13812. PubMed ID: 36326192 [TBL] [Abstract][Full Text] [Related]
8. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Pagter M; Jensen CR; Petersen KK; Liu F; Arora R Physiol Plant; 2008 Nov; 134(3):473-85. PubMed ID: 18636985 [TBL] [Abstract][Full Text] [Related]
9. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Heide OM Tree Physiol; 2003 Sep; 23(13):931-6. PubMed ID: 14532017 [TBL] [Abstract][Full Text] [Related]
10. Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods. Tenkanen A; Keinänen M; Oksanen E; Keski-Saari S; Kontunen-Soppela S Tree Physiol; 2023 Jan; 43(1):16-30. PubMed ID: 36049078 [TBL] [Abstract][Full Text] [Related]
11. Involvement of CBF transcription factors in winter hardiness in birch. Welling A; Palva ET Plant Physiol; 2008 Jul; 147(3):1199-211. PubMed ID: 18467468 [TBL] [Abstract][Full Text] [Related]
12. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Ruonala R; Rinne PL; Baghour M; Moritz T; Tuominen H; Kangasjärvi J Plant J; 2006 May; 46(4):628-40. PubMed ID: 16640599 [TBL] [Abstract][Full Text] [Related]
13. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Tanino KK; Kalcsits L; Silim S; Kendall E; Gray GR Plant Mol Biol; 2010 May; 73(1-2):49-65. PubMed ID: 20191309 [TBL] [Abstract][Full Text] [Related]
14. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Welling A; Moritz T; Palva ET; Junttila O Plant Physiol; 2002 Aug; 129(4):1633-41. PubMed ID: 12177476 [TBL] [Abstract][Full Text] [Related]
15. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Myking T; Heide OM Tree Physiol; 1995 Nov; 15(11):697-704. PubMed ID: 14965987 [TBL] [Abstract][Full Text] [Related]
17. Role of Abscisic Acid in Drought-Induced Freezing Tolerance, Cold Acclimation, and Accumulation of LT178 and RAB18 Proteins in Arabidopsis thaliana. Mantyla E; Lang V; Palva ET Plant Physiol; 1995 Jan; 107(1):141-148. PubMed ID: 12228349 [TBL] [Abstract][Full Text] [Related]
18. Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice. Shinkawa R; Morishita A; Amikura K; Machida R; Murakawa H; Kuchitsu K; Ishikawa M BMC Res Notes; 2013 Sep; 6():351. PubMed ID: 24004611 [TBL] [Abstract][Full Text] [Related]
19. Effect of Abscisic Acid, Cold Hardening, and Photoperiod on Recovery of Cryopreserved in Vitro Shoot Tips of Silver Birch. Ryynänen L Cryobiology; 1998 Feb; 36(1):32-9. PubMed ID: 9500934 [TBL] [Abstract][Full Text] [Related]
20. Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines. Wang H; Blakeslee JJ; Jones ML; Chapin LJ; Dami IE Plant Sci; 2020 Apr; 293():110437. PubMed ID: 32081274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]