These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1613813)

  • 1. Intracellular acidosis in human and experimental brain injury.
    Marmarou A
    J Neurotrauma; 1992 May; 9 Suppl 2():S551-62. PubMed ID: 1613813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tromethamine and hyperventilation on brain injury in the cat.
    Yoshida K; Marmarou A
    J Neurosurg; 1991 Jan; 74(1):87-96. PubMed ID: 1984513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental brain injury: successful therapy with the weak base, tromethamine. With an overview of CNS acidosis.
    Rosner MJ; Becker DP
    J Neurosurg; 1984 May; 60(5):961-71. PubMed ID: 6716165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Therapeutic effect of THAM on lactic acidosis of severe brain injury].
    Chang W; Li Q; Cao H
    Zhonghua Wai Ke Za Zhi; 1996 Jun; 34(6):364-7. PubMed ID: 9594180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edema and brain trauma.
    Unterberg AW; Stover J; Kress B; Kiening KL
    Neuroscience; 2004; 129(4):1021-9. PubMed ID: 15561417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium bicarbonate versus THAM in ICU patients with mild metabolic acidosis.
    Hoste EA; Colpaert K; Vanholder RC; Lameire NH; De Waele JJ; Blot SI; Colardyn FA
    J Nephrol; 2005; 18(3):303-7. PubMed ID: 16013019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epileptic brain damage: pathophysiology and neurochemical pathology.
    Siesjö BK; Wieloch T
    Adv Neurol; 1986; 44():813-47. PubMed ID: 2871725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury.
    Inao S; Marmarou A; Clarke GD; Andersen BJ; Fatouros PP; Young HF
    J Neurosurg; 1988 Nov; 69(5):736-44. PubMed ID: 3183734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traumatic brain tissue acidosis: experimental and clinical studies.
    Marmarou A; Holdaway R; Ward JD; Yoshida K; Choi SC; Muizelaar JP; Young HF
    Acta Neurochir Suppl (Wien); 1993; 57():160-4. PubMed ID: 8421951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of acute cardiovascular homeostatic responses to hemorrhage following mild to moderate traumatic brain injury.
    McMahon CG; Kenny R; Bennett K; Kirkman E
    Crit Care Med; 2008 Jan; 36(1):216-24. PubMed ID: 18090349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of THAM on brain oedema in experimental brain injury.
    Yoshida K; Corwin F; Marmarou A
    Acta Neurochir Suppl (Wien); 1990; 51():317-9. PubMed ID: 2089927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resuscitation from severe brain trauma.
    Rosomoff HL; Kochanek PM; Clark R; DeKosky ST; Ebmeyer U; Grenvik AN; Marion DW; Obrist W; Palmer AM; Safer P; White RJ
    Crit Care Med; 1996 Feb; 24(2 Suppl):S48-56. PubMed ID: 8608706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electron microscopic and immunohistochemical studies of acute stages of severe brain injury in rats].
    Shimura T; Wang YJ; Hoshino S; Kobayashi S; Nakazawa S
    No Shinkei Geka; 1994 Oct; 22(10):955-62. PubMed ID: 7969762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model.
    Viant MR; Lyeth BG; Miller MG; Berman RF
    NMR Biomed; 2005 Dec; 18(8):507-16. PubMed ID: 16177961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo measurements of tissue pH of the heart, brain, liver, spleen, and skeletal muscle following therapy of severe metabolic uraemic acidosis with infusion of bases: an experimental study on the limitation of the Mellemgaard-Astrup equation.
    Rothe KF; Heisler N
    Eur J Anaesthesiol; 1987 Jul; 4(4):269-80. PubMed ID: 2820724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary injury and acidosis.
    Hovda DA; Becker DP; Katayama Y
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S47-60. PubMed ID: 1588632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury.
    Park E; Bell JD; Siddiq IP; Baker AJ
    J Cereb Blood Flow Metab; 2009 Mar; 29(3):575-84. PubMed ID: 19088740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis.
    Hillered L; Persson L; Nilsson P; Ronne-Engstrom E; Enblad P
    Curr Opin Crit Care; 2006 Apr; 12(2):112-8. PubMed ID: 16543785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased lactate levels impair the coagulation system--a potential contributing factor to progressive hemorrhage after traumatic brain injury.
    Engstrom M; Schott U; Nordstrom CH; Romner B; Reinstrup P
    J Neurosurg Anesthesiol; 2006 Jul; 18(3):200-4. PubMed ID: 16799348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of the fluid-percussion graded model of experimental brain injury in rats].
    Chen FH; Wan X; Fang JS
    Hunan Yi Ke Da Xue Xue Bao; 2000 Apr; 25(2):194-6. PubMed ID: 12212222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.