These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1613869)

  • 1. A comparison of stone damage caused by different modes of shock wave generation.
    Chuong CJ; Zhong P; Preminger GM
    J Urol; 1992 Jul; 148(1):200-5. PubMed ID: 1613869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the rate of extracorporeal shock wave delivery affect stone fragmentation?
    Greenstein A; Matzkin H
    Urology; 1999 Sep; 54(3):430-2. PubMed ID: 10475348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithotripter outcomes in a community practice setting: comparison of an electromagnetic and an electrohydraulic lithotripter.
    Bhojani N; Mandeville JA; Hameed TA; Soergel TM; McAteer JA; Williams JC; Krambeck AE; Lingeman JE
    J Urol; 2015 Mar; 193(3):875-9. PubMed ID: 25305356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Piezoelectric, electrohydraulic and electromagnetic shock wave lithotripsy for lower ureteral stone].
    Sun X; Chen C; Wang Y; Yu H
    Zhonghua Wai Ke Za Zhi; 1999 Apr; 37(4):235-7. PubMed ID: 11829829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracorporeal shock wave lithotripsy of gall stones: an in vitro comparison between an electrohydraulic and a piezoceramic device.
    Schachler R; Bird NC; Sauerbruch T; Frost EA; Sackmann M; Paumgartner G; Johnson AG
    Gut; 1991 Mar; 32(3):312-5. PubMed ID: 2013428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of targeting and generator type on efficacy of extracorporeal shock wave lithotripsy.
    Motolova M; Kral M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2022 Dec; 166(4):434-440. PubMed ID: 35801399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of differences between nanosecond electropulse and electrohydraulic methods of lithotripsy: a comparative in vitro study of efficacy.
    Martov A; Gudkov A; Diamant V; Chepovetsky G; Lerner M
    J Endourol; 2014 Apr; 28(4):437-45. PubMed ID: 24313364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock wave physics.
    Preminger GM
    Am J Kidney Dis; 1991 Apr; 17(4):431-5. PubMed ID: 2008912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experiences with lithotripters: measurements of standardized fragmentation.
    Sass W; Steffen K; Matura E; Folberth W; Dreyer H; Seifert J
    J Stone Dis; 1992 Apr; 4(2):129-40. PubMed ID: 10149178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Focal size and shock wave pressure: a comparison of three different physical shock wave generators].
    Janowitz P; Stuber M; Meier T; Steiner R; Schneider HT; Ell C; Neuhaus H; Ott R; Swobodnik W; Kratzer W
    Dtsch Med Wochenschr; 1990 Dec; 115(51-52):1945-9. PubMed ID: 2261859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracorporeal shock-wave lithotripsy: a comparative study of electrohydraulic and electromagnetic units.
    Matin SF; Yost A; Streem SB
    J Urol; 2001 Dec; 166(6):2053-6. PubMed ID: 11696705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pain in extracorporeal shock-wave lithotripsy: a comparison of different lithotripters in volunteers.
    Schneider HT; Hummel T; Janowitz P; Ott R; Neuhaus H; Swobodnik W; Pauli E; Kobal G; Ell C
    Gastroenterology; 1992 Feb; 102(2):640-6. PubMed ID: 1732133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A clinical comparison of an electrohydraulic and a piezoelectric shockwave lithotripter in gallstone therapy.
    Benninger J; Schneider HT; Hahn EG; Ell C
    Am J Gastroenterol; 1993 Jan; 88(1):58-63. PubMed ID: 8420275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters.
    Krimmel J; Colonius T; Tanguay M
    Urol Res; 2010 Dec; 38(6):505-18. PubMed ID: 21063697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electrohydraulic extracorporeal shock wave lithotripsy on submandibular gland in the rat: electron microscopic evaluation.
    Bayar N; Kaymaz FF; Apan A; Yilmaz E; Cakar AN
    Int J Pediatr Otorhinolaryngol; 2002 May; 63(3):223-33. PubMed ID: 11997158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments.
    Xi X; Zhong P
    Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.