BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1100 related articles for article (PubMed ID: 16139004)

  • 41. Comparison of wide-field fluorescein angiography and 9-field montage angiography in uveitis.
    Nicholson BP; Nigam D; Miller D; Agrón E; Dalal M; Jacobs-El N; da Rocha Lima B; Cunningham D; Nussenblatt R; Sen HN
    Am J Ophthalmol; 2014 Mar; 157(3):673-7. PubMed ID: 24321475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural features anterior to the retina represented in Panoramic Scanning Laser fundus images.
    Dunphy RW; Wentzolf JN; Subramanian M; Conlin PR; Pasquale LR
    Ophthalmic Surg Lasers Imaging; 2008; 39(2):160-3. PubMed ID: 18435345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Confocal scanning infrared laser ophthalmoscopy for indocyanine green angiography.
    Bartsch DU; Weinreb RN; Zinser G; Freeman WR
    Am J Ophthalmol; 1995 Nov; 120(5):642-51. PubMed ID: 7485366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer-assisted image processing for a simulated stereo effect of ocular fundus and fluorescein angiography photographs.
    Chen LJ; Yeh SI
    Ophthalmic Surg Lasers Imaging; 2010; 41(3):293-300. PubMed ID: 20507012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Efficacy of Ultra-wide Angle Fundus Imaging without Dilated Pupils in Annual Health Check-up Examination].
    Kusumi Y; Sano M; Nakayama M; Koto T; Inoue M; Yamamoto M; Hirakata A
    Nippon Ganka Gakkai Zasshi; 2016 Jan; 120(1):35-40. PubMed ID: 26950967
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultra-wide-Field Fundus Autofluorescence for the Detection of Inherited Retinal Disease in Difficult-to-Examine Children.
    Khurram Butt D; Gurbaxani A; Kozak I
    J Pediatr Ophthalmol Strabismus; 2019 Nov; 56(6):383-387. PubMed ID: 31743407
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Excitation-time-dependent increment in the luminescence of fundus autofluorescence.
    Ayata A; Tatlipinar S; Unal M; Ersanli D; Bilge AH
    Br J Ophthalmol; 2008 Sep; 92(9):1241-3. PubMed ID: 18617545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine.
    Kellner U; Renner AB; Tillack H
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3531-8. PubMed ID: 16877425
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Limits of the confocal laser-scanning technique in measurements of time-resolved autofluorescence of the ocular fundus].
    Schweitzer D; Hammer M; Schweitzer F
    Biomed Tech (Berl); 2005 Sep; 50(9):263-7. PubMed ID: 16185033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hyperreflective sign in resolved cotton wool spots using high-resolution optical coherence tomography and optical coherence tomography ophthalmoscopy.
    Kozak I; Bartsch DU; Cheng L; Freeman WR
    Ophthalmology; 2007 Mar; 114(3):537-43. PubMed ID: 17324696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fundus imaging in newborn children with wide-field scanning laser ophthalmoscope.
    Magnusdottir V; Vehmeijer WB; Eliasdottir TS; Hardarson SH; Schalij-Delfos NE; Stefánsson E
    Acta Ophthalmol; 2017 Dec; 95(8):842-844. PubMed ID: 28391630
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wide-field retinal imaging in the management of noninfectious posterior uveitis.
    Campbell JP; Leder HA; Sepah YJ; Gan T; Dunn JP; Hatef E; Cho B; Ibrahim M; Bittencourt M; Channa R; Do DV; Nguyen QD
    Am J Ophthalmol; 2012 Nov; 154(5):908-911.e2. PubMed ID: 22935598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy.
    Bindewald A; Jorzik JJ; Loesch A; Schutt F; Holz FG
    Am J Ophthalmol; 2004 Mar; 137(3):556-8. PubMed ID: 15013882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescein angioscopy: techniques of partial fluorescence, permanent drawing record and photocoagulation.
    Wilson RS
    Ann Ophthalmol; 1976 Dec; 8(12):1478-82. PubMed ID: 1015743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Posterior Segment Distortion in Ultra-Widefield Imaging Compared to Conventional Modalities.
    Nicholson L; Goh LY; Marshall E; Vazquez-Alfageme C; Chatziralli I; Clemo M; Hykin PG; Sivaprasad S
    Ophthalmic Surg Lasers Imaging Retina; 2016 Jul; 47(7):644-51. PubMed ID: 27434896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wide-angle fluorescein angiographic scanning with high resolution using a scanning laser ophthalmoscope through a mirror image fixation target.
    Yang YS; Koh SI; Kim JD; Jeong DM
    Korean J Ophthalmol; 1999 Dec; 13(2):92-9. PubMed ID: 10761404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultra Wide Field Fluorescein Angiography Guided Targeted Retinal Photocoagulation (TRP).
    Reddy S; Hu A; Schwartz SD
    Semin Ophthalmol; 2009; 24(1):9-14. PubMed ID: 19241285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra wide-field imaging of choroidal metastasis secondary to primary breast cancer.
    Coffee RE; Jain A; McCannel TA
    Semin Ophthalmol; 2009; 24(1):34-6. PubMed ID: 19241290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abnormal macular pigment distribution in type 2 idiopathic macular telangiectasia.
    Helb HM; Charbel Issa P; VAN DER Veen RL; Berendschot TT; Scholl HP; Holz FG
    Retina; 2008 Jun; 28(6):808-16. PubMed ID: 18536596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retinal Vascular Abnormalities in Phakomatosis Pigmentovascularis.
    Thanos A; Shwayder T; Papakostas TD; Corradetti G; Capone A; Sarraf D; Shields CL; Trese MT
    Ophthalmol Retina; 2019 Dec; 3(12):1098-1104. PubMed ID: 31420298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 55.