BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16139300)

  • 21. Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PM-IRRAS.
    Vié V; Legardinier S; Chieze L; Le Bihan O; Qin Y; Sarkis J; Hubert JF; Renault A; Desbat B; Le Rumeur E
    Biochim Biophys Acta; 2010 Aug; 1798(8):1503-11. PubMed ID: 20399196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of dystrophin STR fragments in relation to junction helicity.
    Mirza A; Menhart N
    Biochim Biophys Acta; 2008 Sep; 1784(9):1301-9. PubMed ID: 18589007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proximal dystrophin gene deletions and protein alterations in becker muscular dystrophy.
    Novaković I; Bojić D; Todorović S; Apostolski S; Luković L; Stefanović D; Milasin J
    Ann N Y Acad Sci; 2005 Jun; 1048():406-10. PubMed ID: 16154963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A highly functional mini-dystrophin/GFP fusion gene for cell and gene therapy studies of Duchenne muscular dystrophy.
    Li S; Kimura E; Ng R; Fall BM; Meuse L; Reyes M; Faulkner JA; Chamberlain JS
    Hum Mol Genet; 2006 May; 15(10):1610-22. PubMed ID: 16595609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.
    Banks GB; Judge LM; Allen JM; Chamberlain JS
    PLoS Genet; 2010 May; 6(5):e1000958. PubMed ID: 20502633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex.
    Judge LM; Haraguchiln M; Chamberlain JS
    J Cell Sci; 2006 Apr; 119(Pt 8):1537-46. PubMed ID: 16569668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction.
    Amann KJ; Renley BA; Ervasti JM
    J Biol Chem; 1998 Oct; 273(43):28419-23. PubMed ID: 9774469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy.
    Leake MC; Grützner A; Krüger M; Linke WA
    J Struct Biol; 2006 Aug; 155(2):263-72. PubMed ID: 16682230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Configurational entropy modulates the mechanical stability of protein GB1.
    Li H; Wang HC; Cao Y; Sharma D; Wang M
    J Mol Biol; 2008 Jun; 379(4):871-80. PubMed ID: 18472109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectrin, alpha-actinin, and dystrophin.
    Broderick MJ; Winder SJ
    Adv Protein Chem; 2005; 70():203-46. PubMed ID: 15837517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations of temporalis muscle contractile force and histological content from the myostatin and Mdx deficient mouse.
    Byron CD; Hamrick MW; Wingard CJ
    Arch Oral Biol; 2006 May; 51(5):396-405. PubMed ID: 16263075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of functional domains in sarcoglycans essential for their interaction and plasma membrane targeting.
    Chen J; Shi W; Zhang Y; Sokol R; Cai H; Lun M; Moore BF; Farber MJ; Stepanchick JS; Bönnemann CG; Chan YM
    Exp Cell Res; 2006 May; 312(9):1610-25. PubMed ID: 16524571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics.
    Legrand B; Giudice E; Nicolas A; Delalande O; Le Rumeur E
    PLoS One; 2011; 6(8):e23819. PubMed ID: 21901138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regions downstream from the WW domain of dystrophin are important for binding to postsynaptic densities in the brain.
    Sakamoto T; Arima T; Ishizaki M; Kawano R; Koide T; Uchida Y; Yamashita S; Kimura E; Hirano T; Maeda Y; Uchino M
    Neuromuscul Disord; 2008 May; 18(5):382-8. PubMed ID: 18378139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine mapping of hydrophobic contacts reassesses the organization of the first three dystrophin coiled-coil repeats.
    Mias-Lucquin D; Chéron A; Le Rumeur E; Hubert JF; Delalande O
    Protein Sci; 2019 Mar; 28(3):561-570. PubMed ID: 30468271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Preliminary study of the spatial structural and functional changes of dystrophin after exon-3 deletion].
    Liang YY; Zhang C; Chen SL; Feng SW
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Jun; 28(6):938-41. PubMed ID: 18583232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biogenesis of the secretory granule: chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation.
    Mosley CA; Taupenot L; Biswas N; Taulane JP; Olson NH; Vaingankar SM; Wen G; Schork NJ; Ziegler MG; Mahata SK; O'Connor DT
    Biochemistry; 2007 Sep; 46(38):10999-1012. PubMed ID: 17718510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biophysical map of the dystrophin rod.
    Mirza A; Sagathevan M; Sahni N; Choi L; Menhart N
    Biochim Biophys Acta; 2010 Sep; 1804(9):1796-809. PubMed ID: 20382276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility.
    Koenig M; Kunkel LM
    J Biol Chem; 1990 Mar; 265(8):4560-6. PubMed ID: 2407739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.