BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16139767)

  • 1. Three-dimensional analysis of electrode behavior in a human cochlear model.
    Lim YS; Park SI; Kim YH; Oh SH; Kim SJ
    Med Eng Phys; 2005 Oct; 27(8):695-703. PubMed ID: 16139767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode.
    Kiefer J; Böhnke F; Adunka O; Arnold W
    Hear Res; 2006 Nov; 221(1-2):36-43. PubMed ID: 16962268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation.
    Adunka O; Kiefer J; Unkelbach MH; Lehnert T; Gstoettner W
    Laryngoscope; 2004 Jul; 114(7):1237-41. PubMed ID: 15235353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D finite element analyses of insertion of the Nucleus standard straight and the Contour electrode arrays into the human cochlea.
    Kha HN; Chen BK; Clark GM
    J Biomech; 2007; 40(12):2796-805. PubMed ID: 17408675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional geometric modeling of the cochlea using helico-spiral approximation.
    Yoo SK; Wang G; Rubinstein JT; Vannier MW
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1392-402. PubMed ID: 11059174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery.
    Verbist BM; Ferrarini L; Briaire JJ; Zarowski A; Admiraal-Behloul F; Olofsen H; Reiber JH; Frijns JH
    Otol Neurotol; 2009 Jun; 30(4):471-7. PubMed ID: 19415036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness properties for Nucleus standard straight and contour electrode arrays.
    Kha HN; Chen BK; Clark GM; Jones R
    Med Eng Phys; 2004 Oct; 26(8):677-85. PubMed ID: 15471696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of damage by cochlear implant electrode array's proximal section to the basilar membrane.
    Kha H; Chen B
    Otol Neurotol; 2012 Sep; 33(7):1176-80. PubMed ID: 22872176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detailed 3D model of the guinea pig cochlea.
    Liu B; Gao XL; Yin HX; Luo SQ; Lu J
    Brain Struct Funct; 2007 Sep; 212(2):223-30. PubMed ID: 17717692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of cochlear damage with three perimodiolar electrode designs.
    Eshraghi AA; Yang NW; Balkany TJ
    Laryngoscope; 2003 Mar; 113(3):415-9. PubMed ID: 12616189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array - a two-dimensional application of finite element analysis.
    Chen BK; Clark GM; Jones R
    Med Eng Phys; 2003 Mar; 25(2):141-7. PubMed ID: 12538068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays.
    Ketten DR; Skinner MW; Wang G; Vannier MW; Gates GA; Neely JG
    Ann Otol Rhinol Laryngol Suppl; 1998 Nov; 175():1-16. PubMed ID: 9826942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused intracochlear electric stimulation with phased array channels.
    van den Honert C; Kelsall DC
    J Acoust Soc Am; 2007 Jun; 121(6):3703-16. PubMed ID: 17552721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of TACT imaging protocols for in situ visualization of cochlear electrode arrays in cat temporal bones.
    Sakata M; Hareyama M; Heil TA; Henson MM; Henson OW; Nair MK; Smith DW
    Ear Hear; 2007 Aug; 28(4):444-50. PubMed ID: 17609607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substance distribution in a cochlea model using different pump rates for cochlear implant drug delivery electrode prototypes.
    Paasche G; Bögel L; Leinung M; Lenarz T; Stöver T
    Hear Res; 2006 Feb; 212(1-2):74-82. PubMed ID: 16337758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Developing a finite element model of human head with true anatomic structure mandible].
    Ma C; Zhang H; Du H; Huang S; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):53-6. PubMed ID: 15762115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional spiraling finite element model of the electrically stimulated cochlea.
    Hanekom T
    Ear Hear; 2001 Aug; 22(4):300-15. PubMed ID: 11527037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue resistivities determine the current flow in the cochlea.
    Micco AG; Richter CP
    Curr Opin Otolaryngol Head Neck Surg; 2006 Oct; 14(5):352-5. PubMed ID: 16974151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of implant surface roughness and stiffness of grafted bone on an immediately loaded maxillary implant: a 3D numerical analysis.
    Huang HL; Fuh LJ; Hsu JT; Tu MG; Shen YW; Wu CL
    J Oral Rehabil; 2008 Apr; 35(4):283-90. PubMed ID: 18321264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Department of a finite element model of the Head Model of HYBRID III Dummy with the Human Mandible].
    Zhang HZ; Huang XM; Li SY; Liu CM; Ma CS; Du HL; Huang SL
    Zhonghua Yi Xue Za Zhi; 2003 Dec; 83(24):2166-9. PubMed ID: 14720428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.