These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 16139881)

  • 1. Glucose-responsive UV polymerised dextran-concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery.
    Tanna S; Joan Taylor M; Sahota TS; Sawicka K
    Biomaterials; 2006 Mar; 27(8):1586-97. PubMed ID: 16139881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.
    Tanna S; Sahota TS; Sawicka K; Taylor MJ
    Biomaterials; 2006 Sep; 27(25):4498-507. PubMed ID: 16678254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.
    Sahota T; Sawicka K; Taylor J; Tanna S
    Drug Dev Ind Pharm; 2011 Mar; 37(3):351-8. PubMed ID: 21244237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological characterisation of dextran-concanavalin A mixtures as a basis for a self-regulated drug delivery device.
    Taylor MJ; Tanna S; Sahota TS; Voermans B
    Eur J Pharm Biopharm; 2006 Jan; 62(1):94-100. PubMed ID: 16183269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-sensitive gel rheology of dextran-concanavalin A mixtures suitable for self-regulating insulin delivery.
    Taylor MJ; Tanna S; Sahota TS
    Pharm Dev Technol; 2010; 15(1):80-8. PubMed ID: 19505210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV cross-linked dextran methacrylate--concanavalin A methacrylamide gel materials for self-regulated insulin delivery.
    Taylor MJ; Tanna S; Sahota TS
    Drug Dev Ind Pharm; 2008 Jan; 34(1):73-82. PubMed ID: 18214758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent coupling of concanavalin A to a Carbopol 934P and 941P carrier in glucose-sensitive gels for delivery of insulin.
    Tanna S; Sahota T; Clark J; Taylor MJ
    J Pharm Pharmacol; 2002 Nov; 54(11):1461-9. PubMed ID: 12495548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A covalently stabilised glucose responsive gel formulation with a Carbopol carrier.
    Tanna S; Sahota T; Clark J; Taylor MJ
    J Drug Target; 2002 Aug; 10(5):411-8. PubMed ID: 12442812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-induced release of glycosylpoly(ethylene glycol) insulin bound to a soluble conjugate of concanavalin A.
    Liu F; Song SC; Mix D; Baudys M; Kim SW
    Bioconjug Chem; 1997; 8(5):664-72. PubMed ID: 9327129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin delivery governed by covalently modified lectin-glycogen gels sensitive to glucose.
    Tanna S; Taylor MJ; Adams G
    J Pharm Pharmacol; 1999 Oct; 51(10):1093-8. PubMed ID: 10579679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reversible hydrogel membrane for controlling the delivery of macromolecules.
    Tang M; Zhang R; Bowyer A; Eisenthal R; Hubble J
    Biotechnol Bioeng; 2003 Apr; 82(1):47-53. PubMed ID: 12569623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-responsive composite microparticles based on chitosan, concanavalin A and dextran for insulin delivery.
    Yin R; Han J; Zhang J; Nie J
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):483-8. PubMed ID: 20074919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin.
    Kashyap N; Viswanad B; Sharma G; Bhardwaj V; Ramarao P; Ravi Kumar MN
    Biomaterials; 2007 Apr; 28(11):2051-60. PubMed ID: 17240443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems.
    Almeida JF; Ferreira P; Lopes A; Gil MH
    Int J Biol Macromol; 2011 Dec; 49(5):948-54. PubMed ID: 21871915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: preparation and in vitro release study.
    Yin R; Tong Z; Yang D; Nie J
    Carbohydr Polym; 2012 Jun; 89(1):117-23. PubMed ID: 24750612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery.
    Jamwal S; Ram B; Ranote S; Dharela R; Chauhan GS
    Int J Biol Macromol; 2019 Feb; 123():968-978. PubMed ID: 30448487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery.
    Jones DS; Lawlor MS; Woolfson AD
    J Pharm Sci; 2003 May; 92(5):995-1007. PubMed ID: 12712419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a reversed-phase high-performance liquid chromatography method for the analysis of components from a closed-loop insulin delivery system.
    Sawicka K; Sahota T; Taylor MJ; Tanna S
    J Chromatogr A; 2006 Nov; 1132(1-2):117-23. PubMed ID: 16901496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose and pH dual-responsive concanavalin A based microhydrogels for insulin delivery.
    Yin R; Tong Z; Yang D; Nie J
    Int J Biol Macromol; 2011 Dec; 49(5):1137-42. PubMed ID: 21946079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The delivery of insulin from aqueous and non-aqueous reservoirs governed by a glucose sensitive gel membrane.
    Taylor MJ; Tanna S; Taylor PM; Adams G
    J Drug Target; 1995; 3(3):209-16. PubMed ID: 8705254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.