BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16139914)

  • 1. Modulation of cell membrane disruption by pH-responsive pseudo-peptides through grafting with hydrophilic side chains.
    Chen R; Yue Z; Eccleston ME; Williams S; Slater NK
    J Control Release; 2005 Nov; 108(1):63-72. PubMed ID: 16139914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous solution behaviour and membrane disruptive activity of pH-responsive PEGylated pseudo-peptides and their intracellular distribution.
    Chen R; Yue Z; Eccleston ME; Slater NK
    Biomaterials; 2008 Nov; 29(32):4333-40. PubMed ID: 18708250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the pH-responsive properties of poly(L-lysine iso-phthalamide) grafted with a poly(ethylene glycol) analogue.
    Yue Z; Eccleston ME; Slater NK
    Biomaterials; 2005 Nov; 26(32):6357-66. PubMed ID: 15913772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomaterials; 2009 Apr; 30(10):1954-61. PubMed ID: 19138797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of L-leucine graft content on aqueous solution behavior and membrane-lytic activity of a pH-responsive pseudopeptide.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomacromolecules; 2009 Sep; 10(9):2601-8. PubMed ID: 19642668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of aromatic side-chains on the aqueous properties of pH-sensitive poly(L-lysine iso-phthalamide) derivatives.
    Khormaee S; Chen R; Park JK; Slater NK
    J Biomater Sci Polym Ed; 2010; 21(12):1573-88. PubMed ID: 20537242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals.
    Richardson S; Ferruti P; Duncan R
    J Drug Target; 1999; 6(6):391-404. PubMed ID: 10937285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-responsive pseudo-peptides for cell membrane disruption.
    Eccleston ME; Kuiper M; Gilchrist FM; Slater NK
    J Control Release; 2000 Nov; 69(2):297-307. PubMed ID: 11064136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.
    Watkins KA; Chen R
    Int J Pharm; 2015 Jan; 478(2):496-503. PubMed ID: 25490181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-containing shells.
    Klajnert B; Walach W; Bryszewska M; Dworak A; Shcharbin D
    Cell Biol Int; 2006 Mar; 30(3):248-52. PubMed ID: 16378736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterisation of a new pH-sensitive amphotericin B--poly(ethylene glycol)-b-poly(L-lysine) conjugate.
    Sedlák M; Pravda M; Kubicová L; Mikulcíková P; Ventura K
    Bioorg Med Chem Lett; 2007 May; 17(9):2554-7. PubMed ID: 17336066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(amidoamine) salt form: effect on pH-dependent membrane activity and polymer conformation in solution.
    Wan KW; Malgesini B; Verpilio I; Ferruti P; Griffiths PC; Paul A; Hann AC; Duncan R
    Biomacromolecules; 2004; 5(3):1102-9. PubMed ID: 15132705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery.
    Wang XL; Xu R; Lu ZR
    J Control Release; 2009 Mar; 134(3):207-13. PubMed ID: 19135104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tetra(L-lysine)-grafted poly(organophosphazene) for gene delivery.
    Jun YJ; Kim JH; Choi SJ; Lee HJ; Jun MJ; Sohn YS
    Bioorg Med Chem Lett; 2007 Jun; 17(11):2975-8. PubMed ID: 17428658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term expression with a cationic polymer derived from a natural polysaccharide: schizophyllan.
    Nagasaki T; Hojo M; Uno A; Satoh T; Koumoto K; Mizu M; Sakurai K; Shinkai S
    Bioconjug Chem; 2004; 15(2):249-59. PubMed ID: 15025520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery.
    Mebarek N; Aubert-Pouëssel A; Gérardin C; Vicente R; Devoisselle JM; Bégu S
    Int J Pharm; 2013 Oct; 454(2):611-20. PubMed ID: 23792466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles.
    Moore NM; Sheppard CL; Barbour TR; Sakiyama-Elbert SE
    J Gene Med; 2008 Oct; 10(10):1134-49. PubMed ID: 18642401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoresis analysis of poly(ethylene glycol) and ligand-modified polylysine gene delivery vectors.
    Guo Y; Sun Y; Gu J; Xu Y
    Anal Biochem; 2007 Apr; 363(2):204-9. PubMed ID: 17328860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The control of dendritic cell maturation by pH-sensitive polyion complex micelles.
    Boudier A; Aubert-Pouëssel A; Louis-Plence P; Gérardin C; Jorgensen C; Devoisselle JM; Bégu S
    Biomaterials; 2009 Jan; 30(2):233-41. PubMed ID: 18851879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.