These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 16140032)
21. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
22. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Latimer LN; Dueber JE Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133 [TBL] [Abstract][Full Text] [Related]
23. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
24. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. Johansson B; Hahn-Hägerdal B FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276 [TBL] [Abstract][Full Text] [Related]
26. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
27. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Jin YS; Laplaza JM; Jeffries TW Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549 [TBL] [Abstract][Full Text] [Related]
28. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains. Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859 [TBL] [Abstract][Full Text] [Related]
29. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825 [TBL] [Abstract][Full Text] [Related]
30. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Feng X; Zhao H Microb Cell Fact; 2013 Nov; 12():114. PubMed ID: 24245823 [TBL] [Abstract][Full Text] [Related]
31. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. Jeppsson M; Träff K; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF FEMS Yeast Res; 2003 Apr; 3(2):167-75. PubMed ID: 12702449 [TBL] [Abstract][Full Text] [Related]
32. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
33. Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Cadete RM; de Las Heras AM; Sandström AG; Ferreira C; Gírio F; Gorwa-Grauslund MF; Rosa CA; Fonseca C Biotechnol Biofuels; 2016; 9():167. PubMed ID: 27499810 [TBL] [Abstract][Full Text] [Related]
34. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865 [TBL] [Abstract][Full Text] [Related]
35. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Roca C; Olsson L Appl Microbiol Biotechnol; 2003 Jan; 60(5):560-3. PubMed ID: 12536256 [TBL] [Abstract][Full Text] [Related]
36. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Alff-Tuomala S; Salusjärvi L; Barth D; Oja M; Penttilä M; Pitkänen JP; Ruohonen L; Jouhten P Appl Microbiol Biotechnol; 2016 Jan; 100(2):969-85. PubMed ID: 26454869 [TBL] [Abstract][Full Text] [Related]
37. Physiological effects of over-expressing compartment-specific components of the protein folding machinery in xylose-fermenting Saccharomyces cerevisiae. Bergdahl B; Gorwa-Grauslund MF; van Niel EW BMC Biotechnol; 2014 Apr; 14():28. PubMed ID: 24758421 [TBL] [Abstract][Full Text] [Related]
38. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related]
39. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Wasylenko TM; Stephanopoulos G Biotechnol Bioeng; 2015 Mar; 112(3):470-83. PubMed ID: 25311863 [TBL] [Abstract][Full Text] [Related]
40. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]