BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 16140257)

  • 1. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction.
    Morrison E; Kantz A; Gassner GT; Sazinsky MH
    Biochemistry; 2013 Sep; 52(35):6063-75. PubMed ID: 23909369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
    Kantz A; Gassner GT
    Biochemistry; 2011 Feb; 50(4):523-32. PubMed ID: 21166448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The styrene monooxygenase system.
    Gassner GT
    Methods Enzymol; 2019; 620():423-453. PubMed ID: 31072496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and ligand binding properties of the epoxidase component of styrene monooxygenase .
    Ukaegbu UE; Kantz A; Beaton M; Gassner GT; Rosenzweig AC
    Biochemistry; 2010 Mar; 49(8):1678-88. PubMed ID: 20055497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase.
    Lin TY; Werther T; Jeoung JH; Dobbek H
    J Biol Chem; 2012 Nov; 287(45):38338-46. PubMed ID: 22992736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
    Heine T; Tucker K; Okonkwo N; Assefa B; Conrad C; Scholtissek A; Schlömann M; Gassner G; Tischler D
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1590-1610. PubMed ID: 27830466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1.
    Gröning JA; Kaschabek SR; Schlömann M; Tischler D
    Arch Microbiol; 2014 Dec; 196(12):829-45. PubMed ID: 25116410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two components of the 2-naphthoate monooxygenase system from Burkholderia sp. strain JT1500.
    Deng D; Li X; Fang X; Sun G
    FEMS Microbiol Lett; 2007 Aug; 273(1):22-7. PubMed ID: 17559398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276.
    Gallagher SC; Cammack R; Dalton H
    Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):79-85. PubMed ID: 10085230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the reductive half-reaction of the iron-sulfur flavoenzyme CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase.
    Gassner GT; Johnson DA; Liu HW; Ballou DP
    Biochemistry; 1996 Jun; 35(24):7752-61. PubMed ID: 8672475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regenerable copper anode for the Cu(I)-mediated reduction of FAD in the electroenzymatic styrene epoxidation reaction.
    Amongre R; Gassner G
    Bioelectrochemistry; 2021 Feb; 137():107679. PubMed ID: 33120296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.
    Tittmann K; Schröder K; Golbik R; McCourt J; Kaplun A; Duggleby RG; Barak Z; Chipman DM; Hübner G
    Biochemistry; 2004 Jul; 43(27):8652-61. PubMed ID: 15236573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.