These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16140258)

  • 1. The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria.
    Miwa S; Brand MD
    Biochim Biophys Acta; 2005 Sep; 1709(3):214-9. PubMed ID: 16140258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide and hydrogen peroxide production by Drosophila mitochondria.
    Miwa S; St-Pierre J; Partridge L; Brand MD
    Free Radic Biol Med; 2003 Oct; 35(8):938-48. PubMed ID: 14556858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex III releases superoxide to both sides of the inner mitochondrial membrane.
    Muller FL; Liu Y; Van Remmen H
    J Biol Chem; 2004 Nov; 279(47):49064-73. PubMed ID: 15317809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase.
    Orr AL; Quinlan CL; Perevoshchikova IV; Brand MD
    J Biol Chem; 2012 Dec; 287(51):42921-35. PubMed ID: 23124204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria.
    Han D; Canali R; Rettori D; Kaplowitz N
    Mol Pharmacol; 2003 Nov; 64(5):1136-44. PubMed ID: 14573763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide radical and iron modulate aconitase activity in mammalian cells.
    Gardner PR; Raineri I; Epstein LB; White CW
    J Biol Chem; 1995 Jun; 270(22):13399-405. PubMed ID: 7768942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat.
    Armstrong JS; Whiteman M; Yang H; Jones DP
    Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide.
    Viola HM; Hool LC
    J Mol Cell Cardiol; 2010 Nov; 49(5):875-85. PubMed ID: 20688078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.
    Brand MD
    Free Radic Biol Med; 2016 Nov; 100():14-31. PubMed ID: 27085844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.
    Lenaz G
    IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis.
    Iñarrea P; Moini H; Han D; Rettori D; Aguiló I; Alava MA; Iturralde M; Cadenas E
    Biochem J; 2007 Jul; 405(1):173-9. PubMed ID: 17394422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria.
    Mrácek T; Pecinová A; Vrbacký M; Drahota Z; Houstek J
    Arch Biochem Biophys; 2009 Jan; 481(1):30-6. PubMed ID: 18952046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide.
    Fang J; Beattie DS
    Free Radic Biol Med; 2003 Feb; 34(4):478-88. PubMed ID: 12566073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
    James AM; Cochemé HM; Smith RA; Murphy MP
    J Biol Chem; 2005 Jun; 280(22):21295-312. PubMed ID: 15788391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase.
    Mráček T; Holzerová E; Drahota Z; Kovářová N; Vrbacký M; Ješina P; Houštěk J
    Biochim Biophys Acta; 2014 Jan; 1837(1):98-111. PubMed ID: 23999537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production.
    Scandroglio F; Tórtora V; Radi R; Castro L
    Free Radic Res; 2014 Jun; 48(6):684-93. PubMed ID: 24601712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase.
    Raha S; McEachern GE; Myint AT; Robinson BH
    Free Radic Biol Med; 2000 Jul; 29(2):170-80. PubMed ID: 10980405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sources of superoxide/H2O2 during mitochondrial proline oxidation.
    Goncalves RL; Rothschild DE; Quinlan CL; Scott GK; Benz CC; Brand MD
    Redox Biol; 2014; 2():901-9. PubMed ID: 25184115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppressors of superoxide production from mitochondrial complex III.
    Orr AL; Vargas L; Turk CN; Baaten JE; Matzen JT; Dardov VJ; Attle SJ; Li J; Quackenbush DC; Goncalves RL; Perevoshchikova IV; Petrassi HM; Meeusen SL; Ainscow EK; Brand MD
    Nat Chem Biol; 2015 Nov; 11(11):834-6. PubMed ID: 26368590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-dependent modulation of aconitase activity in intact mitochondria.
    Bulteau AL; Ikeda-Saito M; Szweda LI
    Biochemistry; 2003 Dec; 42(50):14846-55. PubMed ID: 14674759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.