BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16140344)

  • 1. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):800-9. PubMed ID: 9282472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale finite element analysis of the beating heart.
    McCulloch A; Waldman L; Rogers J; Guccione J
    Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes.
    Jacquemet V; Henriquez CS
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1490-2. PubMed ID: 16119246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods.
    Filoux E; Callé S; Certon D; Lethiecq M; Levassort F
    J Acoust Soc Am; 2008 Jun; 123(6):4165-73. PubMed ID: 18537368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of bioelectric phenomena.
    Miller CE; Henriquez CS
    Crit Rev Biomed Eng; 1990; 18(3):207-33. PubMed ID: 2286094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.
    Lee WH; Kim TS; Cho MH; Ahn YB; Lee SY
    Phys Med Biol; 2006 Dec; 51(23):6173-86. PubMed ID: 17110778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis.
    Paulsen KD; Jia X; Sullivan JM
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):933-45. PubMed ID: 8288285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New developments in a strongly coupled cardiac electromechanical model.
    Nickerson D; Smith N; Hunter P
    Europace; 2005 Sep; 7 Suppl 2():118-27. PubMed ID: 16102509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature-preserving adaptive mesh generation for molecular shape modeling and simulation.
    Yu Z; Holst MJ; Cheng Y; McCammon JA
    J Mol Graph Model; 2008 Jun; 26(8):1370-80. PubMed ID: 18337134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional finite-difference bidomain modeling of homogeneous cardiac tissue on a data-parallel computer.
    Saleheen HI; Claessen PD; Ng KT
    IEEE Trans Biomed Eng; 1997 Feb; 44(2):200-4. PubMed ID: 9214799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods and framework for visualizing higher-order finite elements.
    Schroeder WJ; Bertel F; Malaterre M; Thompson D; Pébay PP; O'Bara R; Tendulkar S
    IEEE Trans Vis Comput Graph; 2006; 12(4):446-60. PubMed ID: 16805255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Three-dimensional motion analysis of right ventricular based on an electrophysiologic-mechanical composite heart model].
    Xia L; Ye X; Huo M; Zhang Y; Don J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):110-5. PubMed ID: 17333902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional electrical impedance tomography: a topology optimization approach.
    Mello LA; de Lima CR; Amato MB; Lima RG; Silva EC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):531-40. PubMed ID: 18269988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures.
    Laganà K; Dubini G; Migliavacca F; Pietrabissa R; Pennati G; Veneziani A; Quarteroni A
    Biorheology; 2002; 39(3-4):359-64. PubMed ID: 12122253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.