These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16140344)

  • 41. Applications of the finite-element method to ventricular mechanics.
    Yin FC
    Crit Rev Biomed Eng; 1985; 12(4):311-42. PubMed ID: 3893884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving the finite element forward model of the human head by warping using elastic deformation.
    Tizzard A; Bayford RH
    Physiol Meas; 2007 Jul; 28(7):S163-82. PubMed ID: 17664634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Simulation study of Kubicek formula for cardiac stroke volume calculation by 3-dimensional finite element method].
    Wang H; Wang J; Dong X; Qi J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):89-92. PubMed ID: 11951532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor.
    Jernigan SR; Buckner GD; Eischen JW; Cormier DR
    J Biomech Eng; 2007 Dec; 129(6):825-37. PubMed ID: 18067386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
    Kurashige Y; Nakajima T; Hirao K
    J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Computer simulation methods of cardiac electrophysiology].
    Jin Y; Yang L; Zhang H; Huang Y; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):419-23. PubMed ID: 16706380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity.
    Geneser SE; Kirby RM; MacLeod RS
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes.
    Díaz-Zuccarini V; LeFèvre J
    Comput Biol Med; 2007 Jun; 37(6):774-84. PubMed ID: 17052704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microwave imaging using the finite-element method and a sensitivity analysis approach.
    Rekanos IT; Panas SM; Tsiboukis TD
    IEEE Trans Med Imaging; 1999 Nov; 18(11):1108-14. PubMed ID: 10661328
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A guide to modelling cardiac electrical activity in anatomically detailed ventricles.
    Clayton RH; Panfilov AV
    Prog Biophys Mol Biol; 2008; 96(1-3):19-43. PubMed ID: 17825362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An electromechanical model of the heart for image analysis and simulation.
    Sermesant M; Delingette H; Ayache N
    IEEE Trans Med Imaging; 2006 May; 25(5):612-25. PubMed ID: 16689265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium.
    Abascal JF; Arridge SR; Lionheart WR; Bayford RH; Holder DS
    Physiol Meas; 2007 Jul; 28(7):S129-40. PubMed ID: 17664630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-order system least-squares (FOSLS) for modeling blood flow.
    Heys JJ; DeGroff CG; Manteuffel TA; McCormick SF
    Med Eng Phys; 2006 Jul; 28(6):495-503. PubMed ID: 16275152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.
    Chamakuri N; Kunisch K; Plank G
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02742. PubMed ID: 26249168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Fluid-structure interaction analysis based on a 3D finite element model of human left ventricular].
    Wu B; Zhang K; Wan H; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):149-56. PubMed ID: 23488156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.