BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16140412)

  • 1. PLA stereocomplexes for controlled release of somatostatin analogue.
    Bishara A; Domb AJ
    J Control Release; 2005 Oct; 107(3):474-83. PubMed ID: 16140412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hetero-stereocomplexes of D-poly(lactic acid) and the LHRH analogue leuprolide. Application in controlled release.
    Slager J; Domb AJ
    Eur J Pharm Biopharm; 2004 Nov; 58(3):461-9. PubMed ID: 15451519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereocomplexes based on poly(lactic acid) and insulin: formulation and release studies.
    Slager J; Domb AJ
    Biomaterials; 2002 Nov; 23(22):4389-96. PubMed ID: 12219829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostereocomplexes prepared from d-PLA and l-PLA and leuprolide. II. Release of leuprolide.
    Slager J; Domb AJ
    Biomacromolecules; 2003; 4(5):1316-20. PubMed ID: 12959600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications.
    Tsuji H
    Macromol Biosci; 2005 Jul; 5(7):569-97. PubMed ID: 15997437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers.
    Slivniak R; Domb AJ
    Biomacromolecules; 2002; 3(4):754-60. PubMed ID: 12099819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation.
    Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P
    Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions.
    Murty SB; Goodman J; Thanoo BC; DeLuca PP
    AAPS PharmSciTech; 2003 Oct; 4(4):E50. PubMed ID: 15198545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures.
    Andersson SR; Hakkarainen M; Inkinen S; Södergård A; Albertsson AC
    Biomacromolecules; 2012 Apr; 13(4):1212-22. PubMed ID: 22394150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers.
    Shao J; Sun J; Bian X; Cui Y; Li G; Chen X
    J Phys Chem B; 2012 Aug; 116(33):9983-91. PubMed ID: 22849773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembling stereocomplex nanoparticles by enantiomeric poly(γ-glutamic acid)-poly(lactide) graft copolymers as a protein delivery carrier.
    Zhu Y; Akagi T; Akashi M
    Macromol Biosci; 2014 Apr; 14(4):576-87. PubMed ID: 24357577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Processing of Stereocomplex-Type Polylactide.
    Bai H; Deng S; Bai D; Zhang Q; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 28898498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s.
    Hu J; Tang Z; Qiu X; Pang X; Yang Y; Chen X; Jing X
    Biomacromolecules; 2005; 6(5):2843-50. PubMed ID: 16153126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterostereocomplexes prepared from d-poly(lactide) and leuprolide. I. Characterization.
    Slager J; Domb AJ
    Biomacromolecules; 2003; 4(5):1308-15. PubMed ID: 12959599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.
    Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation behaviour of microspheres prepared by spray-drying poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) polymers.
    Blanco MD; Sastre RL; Teijón C; Olmo R; Teijón JM
    Int J Pharm; 2006 Dec; 326(1-2):139-47. PubMed ID: 16971074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the LCST of PNIPAAM-b-PLA-b-PNIPAAM triblock copolymers via stereocomplexation.
    Zhang X; Tan BH; He C
    Macromol Rapid Commun; 2013 Nov; 34(22):1761-6. PubMed ID: 24132868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel.
    Dong Y; Feng SS
    J Biomed Mater Res A; 2006 Jul; 78(1):12-9. PubMed ID: 16596586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.