BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 16140528)

  • 41. Fuzzy logic control of bioreactor for enhanced biosynthesis of alkaline protease by an alkalophilic strain of Bacillus subtilis.
    ul-Haq I; Mukhtar H
    Curr Microbiol; 2006 Feb; 52(2):149-52. PubMed ID: 16450068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.
    Drouin M; Lai CK; Tyagi RD; Surampalli RY
    Water Sci Technol; 2008; 57(3):423-9. PubMed ID: 18309222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient mosquitocidal toxin production by Bacillus sphaericus using cheese whey permeate under both submerged and solid state fermentations.
    El-Bendary MA; Moharam ME; Foda MS
    J Invertebr Pathol; 2008 May; 98(1):46-53. PubMed ID: 18258255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using sewage sludge as a raw material.
    Tyagi RD; Sikati Foko V; Barnabe S; Vidyarthi AS; Valéro JR; Surampalli RY
    Water Sci Technol; 2002; 46(10):247-54. PubMed ID: 12479478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of cyclodextrin glucanotransferase from an alkalophilic Bacillus sp. by pH-stat fed-batch fermentation.
    Kuo CC; Lin CA; Chen JY; Lin MT; Duan KJ
    Biotechnol Lett; 2009 Nov; 31(11):1723-7. PubMed ID: 19588253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and identification of alpha-amylase producing Bacillus sp. from dhal industry waste.
    Thippeswamy S; Girigowda K; Mulimani VH
    Indian J Biochem Biophys; 2006 Oct; 43(5):295-8. PubMed ID: 17133736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources.
    Jürgen B; Tobisch S; Wümpelmann M; Gördes D; Koch A; Thurow K; Albrecht D; Hecker M; Schweder T
    Biotechnol Bioeng; 2005 Nov; 92(3):277-98. PubMed ID: 16178035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Fermentation conditions for production of alkaline elastase by alkaliphilic Bacillus XE22-4-1].
    Xiao C; Lu J; Tian X; Li X; Zhou P
    Wei Sheng Wu Xue Bao; 2001 Oct; 41(5):611-6. PubMed ID: 12552811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cost-effective production of Bacillus thuringiensis by solid-state fermentation.
    Devi PS; Ravinder T; Jaidev C
    J Invertebr Pathol; 2005 Feb; 88(2):163-8. PubMed ID: 15766933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biohydrogen production process optimization using anaerobic mixed consortia: a prelude study for use of agro-industrial material hydrolysate as substrate.
    Prakasham RS; Sathish T; Brahmaiah P
    Bioresour Technol; 2010 Jul; 101(14):5708-11. PubMed ID: 20189806
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology.
    Prakasham RS; Rao ChS; Rao RS; Rajesham S; Sarma PN
    Appl Biochem Biotechnol; 2005 Feb; 120(2):133-44. PubMed ID: 15695842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation.
    Mukhtar H; Haq I
    ScientificWorldJournal; 2013; 2013():538067. PubMed ID: 24294129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development of a Bacillus subtilis 168 culture condition for enhanced and accelerated beta-mannanase production.
    el-Helow ER; Khattab AA
    Acta Microbiol Immunol Hung; 1996; 43(4):289-99. PubMed ID: 9147720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2.
    Kim HO; Wee YJ; Kim JN; Yun JS; Ryu HW
    Appl Biochem Biotechnol; 2006; 129-132():694-704. PubMed ID: 16915680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries.
    Ganesh Kumar A; Swarnalatha S; Sairam B; Sekaran G
    Bioresour Technol; 2008 Apr; 99(6):1939-44. PubMed ID: 17481889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2.
    Kim HO; Wee YJ; Kim JN; Yun JS; Ryu HW
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):694-704. PubMed ID: 18563646
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue.
    Swain MR; Ray RC
    J Basic Microbiol; 2007 Oct; 47(5):417-25. PubMed ID: 17910107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioindicator production with Bacillus atrophaeus' thermal-resistant spores cultivated by solid-state fermentation.
    Sella SR; Guizelini BP; Vandenberghe LP; Medeiros AB; Soccol CR
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1019-26. PubMed ID: 19039586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001.
    Deng A; Wu J; Zhang Y; Zhang G; Wen T
    Bioresour Technol; 2010 Sep; 101(18):7111-7. PubMed ID: 20417096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.