These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 16140599)
1. Silk implants for the healing of critical size bone defects. Meinel L; Fajardo R; Hofmann S; Langer R; Chen J; Snyder B; Vunjak-Novakovic G; Kaplan D Bone; 2005 Nov; 37(5):688-98. PubMed ID: 16140599 [TBL] [Abstract][Full Text] [Related]
2. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936 [TBL] [Abstract][Full Text] [Related]
3. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
4. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
5. Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep. Sachse A; Wagner A; Keller M; Wagner O; Wetzel WD; Layher F; Venbrocks RA; Hortschansky P; Pietraszczyk M; Wiederanders B; Hempel HJ; Bossert J; Horn J; Schmuck K; Mollenhauer J Bone; 2005 Nov; 37(5):699-710. PubMed ID: 16139577 [TBL] [Abstract][Full Text] [Related]
6. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
7. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Karageorgiou V; Meinel L; Hofmann S; Malhotra A; Volloch V; Kaplan D J Biomed Mater Res A; 2004 Dec; 71(3):528-37. PubMed ID: 15478212 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Zhang Y; Fan W; Nothdurft L; Wu C; Zhou Y; Crawford R; Xiao Y Tissue Eng Part C Methods; 2011 Aug; 17(8):789-97. PubMed ID: 21506685 [TBL] [Abstract][Full Text] [Related]
9. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040 [TBL] [Abstract][Full Text] [Related]
10. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Meinel L; Hofmann S; Karageorgiou V; Zichner L; Langer R; Kaplan D; Vunjak-Novakovic G Biotechnol Bioeng; 2004 Nov; 88(3):379-91. PubMed ID: 15486944 [TBL] [Abstract][Full Text] [Related]
11. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Bjerre L; Bünger CE; Kassem M; Mygind T Biomaterials; 2008 Jun; 29(17):2616-27. PubMed ID: 18374976 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
13. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872 [TBL] [Abstract][Full Text] [Related]
14. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. Karageorgiou V; Tomkins M; Fajardo R; Meinel L; Snyder B; Wade K; Chen J; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2006 Aug; 78(2):324-34. PubMed ID: 16637042 [TBL] [Abstract][Full Text] [Related]
15. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. McKee MD; Nanci A Microsc Res Tech; 1996 Feb; 33(2):141-64. PubMed ID: 8845514 [TBL] [Abstract][Full Text] [Related]
16. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. Uebersax L; Merkle HP; Meinel L J Control Release; 2008 Apr; 127(1):12-21. PubMed ID: 18280603 [TBL] [Abstract][Full Text] [Related]
17. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371 [TBL] [Abstract][Full Text] [Related]
18. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
19. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. Hou R; Chen F; Yang Y; Cheng X; Gao Z; Yang HO; Wu W; Mao T J Biomed Mater Res A; 2007 Jan; 80(1):85-93. PubMed ID: 16960828 [TBL] [Abstract][Full Text] [Related]
20. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Hong SJ; Kim CS; Han DK; Cho IH; Jung UW; Choi SH; Kim CK; Cho KS Biomaterials; 2006 Jul; 27(20):3810-6. PubMed ID: 16574220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]