BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16140820)

  • 1. The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis.
    Braun JT; Akyuz E; Ogilvie JW; Bachus KN
    J Bone Joint Surg Am; 2005 Sep; 87(9):2038-51. PubMed ID: 16140820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple.
    Braun JT; Akyuz E; Udall H; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Feb; 31(3):262-8. PubMed ID: 16449897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2004 Sep; 29(18):1980-9. PubMed ID: 15371698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis.
    Braun JT; Hines JL; Akyuz E; Vallera C; Ogilvie JW
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1776-82. PubMed ID: 16845350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model.
    Braun JT; Hoffman M; Akyuz E; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 May; 31(12):1314-20. PubMed ID: 16721292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical assessment of thoracic spine stapling.
    Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E
    Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc: analysis in an immature goat model.
    Hunt KJ; Braun JT; Christensen BA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):371-7. PubMed ID: 20110838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Jun; 31(13):1410-4. PubMed ID: 16741447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of staple on growth rate of vertebral growth plates in goat scoliosis].
    Song D; Meng C; Zheng G; Zhang W; Zhang R; Bai L; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jan; 23(1):72-5. PubMed ID: 19192884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary investigation of shape memory alloys in the surgical correction of scoliosis.
    Sanders JO; Sanders AE; More R; Ashman RB
    Spine (Phila Pa 1976); 1993 Sep; 18(12):1640-6. PubMed ID: 8235844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusionless treatment of scoliosis.
    Guille JT; D'Andrea LP; Betz RR
    Orthop Clin North Am; 2007 Oct; 38(4):541-5, vii. PubMed ID: 17945133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation.
    Hachem B; Aubin CE; Parent S
    Eur Spine J; 2017 Jun; 26(6):1610-1617. PubMed ID: 28070685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study on controlling unilateral spine growth by shape memory alloy staple].
    Zhang YG; Zhang W; Zheng GQ; Zhang RY; Zhang HZ; Wang Y
    Zhonghua Wai Ke Za Zhi; 2007 Apr; 45(8):537-9. PubMed ID: 17686325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of animal models in fusionless scoliosis investigations.
    Braun JT; Akyuz E; Ogilvie JW
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S35-45. PubMed ID: 16138065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An experimental study of correction of idiopathic-type scoliosis by staple].
    Zheng GQ; Zhang YG; Wang Y; Zhang XS; Zhang RY; Zhang W
    Zhonghua Wai Ke Za Zhi; 2009 Jan; 47(2):136-8. PubMed ID: 19563011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical research of growth control of spine by shape memory alloy staples.
    Zhang W; Zhang Y; Zheng G; Zhang R; Wang Y
    Biomed Res Int; 2013; 2013():384894. PubMed ID: 24350265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical and radiographic results after implant removal in idiopathic scoliosis.
    Rathjen K; Wood M; McClung A; Vest Z
    Spine (Phila Pa 1976); 2007 Sep; 32(20):2184-8. PubMed ID: 17873809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Animal experiment of memory alloy staples to control the sagittal growth of vertebrates].
    Bai L; Zhang W; Zheng GQ; Zhang YG
    Zhonghua Wai Ke Za Zhi; 2011 Feb; 49(2):145-9. PubMed ID: 21426830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis.
    Driscoll M; Aubin CE; Moreau A; Parent S
    Med Biol Eng Comput; 2011 Dec; 49(12):1437-45. PubMed ID: 21755319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scoliosis correction with shape-memory metal: results of an experimental study.
    Wever DJ; Elstrodt JA; Veldhuizen AG; v Horn JR
    Eur Spine J; 2002 Apr; 11(2):100-6. PubMed ID: 11956914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.