These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 16141206)
1. Two conserved histidine residues are critical to the function of the TagF-like family of enzymes. Schertzer JW; Bhavsar AP; Brown ED J Biol Chem; 2005 Nov; 280(44):36683-90. PubMed ID: 16141206 [TBL] [Abstract][Full Text] [Related]
2. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. Schertzer JW; Brown ED J Biol Chem; 2003 May; 278(20):18002-7. PubMed ID: 12637499 [TBL] [Abstract][Full Text] [Related]
3. The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro. Bhavsar AP; Truant R; Brown ED J Biol Chem; 2005 Nov; 280(44):36691-700. PubMed ID: 16150696 [TBL] [Abstract][Full Text] [Related]
5. CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF (rodC). Pooley HM; Abellan FX; Karamata D J Bacteriol; 1992 Jan; 174(2):646-9. PubMed ID: 1309530 [TBL] [Abstract][Full Text] [Related]
6. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. Sewell EW; Pereira MP; Brown ED J Biol Chem; 2009 Aug; 284(32):21132-8. PubMed ID: 19520862 [TBL] [Abstract][Full Text] [Related]
7. The wall teichoic acid polymerase TagF efficiently synthesizes poly(glycerol phosphate) on the TagB product lipid III. Pereira MP; Schertzer JW; D'Elia MA; Koteva KP; Hughes DW; Wright GD; Brown ED Chembiochem; 2008 Jun; 9(9):1385-90. PubMed ID: 18465758 [No Abstract] [Full Text] [Related]
8. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Bhavsar AP; Erdman LK; Schertzer JW; Brown ED J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257 [TBL] [Abstract][Full Text] [Related]
9. The Amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties. Bhavsar AP; D'Elia MA; Sahakian TD; Brown ED J Bacteriol; 2007 Oct; 189(19):6816-23. PubMed ID: 17660278 [TBL] [Abstract][Full Text] [Related]
10. His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis. Lee TT; Worby C; Bao ZQ; Dixon JE; Colman RF Biochemistry; 1999 Jan; 38(1):22-32. PubMed ID: 9890879 [TBL] [Abstract][Full Text] [Related]
11. Active site mapping of MraY, a member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis. Al-Dabbagh B; Henry X; El Ghachi M; Auger G; Blanot D; Parquet C; Mengin-Lecreulx D; Bouhss A Biochemistry; 2008 Aug; 47(34):8919-28. PubMed ID: 18672909 [TBL] [Abstract][Full Text] [Related]
12. Conserved amino acid residues found in a predicted cytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicated in the recognition of UDP-N-acetylglucosamine. Amer AO; Valvano MA Microbiology (Reading); 2001 Nov; 147(Pt 11):3015-25. PubMed ID: 11700352 [TBL] [Abstract][Full Text] [Related]
13. Identification of functional conserved residues of CTP:glycerol-3-phosphate cytidylyltransferase. Role of histidines in the conserved HXGH in catalysis. Park YS; Gee P; Sanker S; Schurter EJ; Zuiderweg ER; Kent C J Biol Chem; 1997 Jun; 272(24):15161-6. PubMed ID: 9182537 [TBL] [Abstract][Full Text] [Related]
14. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Lovering AL; Lin LY; Sewell EW; Spreter T; Brown ED; Strynadka NC Nat Struct Mol Biol; 2010 May; 17(5):582-9. PubMed ID: 20400947 [TBL] [Abstract][Full Text] [Related]
15. Peptidyl-prolyl cis-trans isomerase of Bacillus subtilis: identification of residues involved in cyclosporin A affinity and catalytic efficiency. Göthel SF; Herrler M; Marahiel MA Biochemistry; 1996 Mar; 35(11):3636-40. PubMed ID: 8639516 [TBL] [Abstract][Full Text] [Related]
16. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
17. Histidine residues 139, 363 and 500 are essential for catalytic activity of cofactor-independent phosphoglyceromutase from developing endosperm of the castor plant. Huang Y; Dennis DT Eur J Biochem; 1995 Apr; 229(2):395-402. PubMed ID: 7744062 [TBL] [Abstract][Full Text] [Related]
18. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase. Montero-Morán GM; Lara-González S; Alvarez-Añorve LI; Plumbridge JA; Calcagno ML Biochemistry; 2001 Aug; 40(34):10187-96. PubMed ID: 11513596 [TBL] [Abstract][Full Text] [Related]
19. Evidence for the shikimate-3-phosphate interacting site in the N-terminal domain of 5-enolpyruvyl shikimate-3-phosphate synthase of Bacillus subtilis. Selvapandiyan A; Ahmad S; Majumder K; Arora N; Bhatnagar RK Biochem Mol Biol Int; 1996 Oct; 40(3):603-10. PubMed ID: 8908371 [TBL] [Abstract][Full Text] [Related]
20. Mix-and-Match System for the Enzymatic Synthesis of Enantiopure Glycerol-3-Phosphate-Containing Capsule Polymer Backbones from Litschko C; Budde I; Berger M; Bethe A; Schulze J; Alcala Orozco EA; Mahour R; Goettig P; Führing JI; Rexer T; Gerardy-Schahn R; Schubert M; Fiebig T mBio; 2021 Jun; 12(3):e0089721. PubMed ID: 34076489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]