BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 16141210)

  • 1. Structural and functional separation of the N- and C-terminal domains of the yeast V-ATPase subunit H.
    Liu M; Tarsio M; Charsky CM; Kane PM
    J Biol Chem; 2005 Nov; 280(44):36978-85. PubMed ID: 16141210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis.
    Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH
    J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase.
    Qi J; Forgac M
    J Biol Chem; 2008 Jul; 283(28):19274-82. PubMed ID: 18492665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity.
    Rizzo JM; Tarsio M; Martínez-Muñoz GA; Kane PM
    J Biol Chem; 2007 Mar; 282(11):8521-32. PubMed ID: 17234635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function.
    Lu M; Vergara S; Zhang L; Holliday LS; Aris J; Gluck SL
    J Biol Chem; 2002 Oct; 277(41):38409-15. PubMed ID: 12163484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase.
    Owegi MA; Pappas DL; Finch MW; Bilbo SA; Resendiz CA; Jacquemin LJ; Warrier A; Trombley JD; McCulloch KM; Margalef KL; Mertz MJ; Storms JM; Damin CA; Parra KJ
    J Biol Chem; 2006 Oct; 281(40):30001-14. PubMed ID: 16891312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F.
    Jefferies KC; Forgac M
    J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p).
    Chan CY; Prudom C; Raines SM; Charkhzarrin S; Melman SD; De Haro LP; Allen C; Lee SA; Sklar LA; Parra KJ
    J Biol Chem; 2012 Mar; 287(13):10236-10250. PubMed ID: 22215674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase.
    Flannery AR; Stevens TH
    J Biol Chem; 2008 Oct; 283(43):29099-108. PubMed ID: 18708638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase.
    Leng XH; Manolson MF; Liu Q; Forgac M
    J Biol Chem; 1996 Sep; 271(37):22487-93. PubMed ID: 8798414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of the N-terminal domain of subunit a of the yeast vacuolar ATPase (V-ATPase) using accessibility of single cysteine substitutions to chemical modification.
    Liberman R; Cotter K; Baleja JD; Forgac M
    J Biol Chem; 2013 Aug; 288(31):22798-808. PubMed ID: 23740254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H(+)-ATPases.
    Forgac M
    J Exp Biol; 2000 Jan; 203(Pt 1):71-80. PubMed ID: 10600675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of the yeast vacuolar H+-ATPase and ATP hydrolysis occurs in the absence of subunit c''.
    Whyteside G; Gibson L; Scott M; Finbow ME
    FEBS Lett; 2005 Jun; 579(14):2981-5. PubMed ID: 15907326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MgATP hydrolysis destabilizes the interaction between subunit H and yeast V
    Sharma S; Oot RA; Wilkens S
    J Biol Chem; 2018 Jul; 293(27):10718-10730. PubMed ID: 29754144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.
    Basak S; Lim J; Manimekalai MS; Balakrishna AM; Grüber G
    J Biol Chem; 2013 Apr; 288(17):11930-9. PubMed ID: 23476018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional complementation reveals that 9 of the 13 human V-ATPase subunits can functionally substitute for their yeast orthologs.
    Abe M; Saito M; Tsukahara A; Shiokawa S; Ueno K; Shimamura H; Nagano M; Toshima JY; Toshima J
    J Biol Chem; 2019 May; 294(20):8273-8285. PubMed ID: 30952699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.
    Parsons LS; Wilkens S
    PLoS One; 2012; 7(10):e46960. PubMed ID: 23071676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit a of the yeast V-ATPase participates in binding of bafilomycin.
    Wang Y; Inoue T; Forgac M
    J Biol Chem; 2005 Dec; 280(49):40481-8. PubMed ID: 16216877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional complementation of yeast vma1 delta cells by a plant subunit A homolog rescues the mutant phenotype and partially restores vacuolar H(+)-ATPase activity.
    Kim W; Wan CY; Wilkins TA
    Plant J; 1999 Mar; 17(5):501-10. PubMed ID: 10205905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the functional coupling of bovine brain vacuolar-type H(+)-translocating ATPase. Effect of divalent cations, phospholipids, and subunit H (SFD).
    Crider BP; Xie XS
    J Biol Chem; 2003 Nov; 278(45):44281-8. PubMed ID: 12949075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.