These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16141266)

  • 21. Inspiratory drive and phase duration during carotid chemoreceptor stimulation in the cat: medullary neurone correlations.
    Morris KF; Arata A; Shannon R; Lindsey BG
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):241-59. PubMed ID: 9011617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep.
    Souza GMPR; Stornetta RL; Stornetta DS; Abbott SBG; Guyenet PG
    J Neurosci; 2019 Dec; 39(49):9725-9737. PubMed ID: 31641048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in neurochemicals within the ventrolateral medullary respiratory column in awake goats after carotid body denervation.
    Miller JR; Neumueller S; Muere C; Olesiak S; Pan L; Hodges MR; Forster HV
    J Appl Physiol (1985); 2013 Oct; 115(7):1088-98. PubMed ID: 23869058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential modulation by extracellular ATP of carotid chemosensory responses.
    Spergel D; Lahiri S
    J Appl Physiol (1985); 1993 Jun; 74(6):3052-6. PubMed ID: 8366007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is ATP a suitable co-transmitter in carotid body arterial chemoreceptors?
    Zapata P
    Respir Physiol Neurobiol; 2007 Jul; 157(1):106-15. PubMed ID: 17276149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of peripheral chemoreceptors and central chemosensitivity in the regulation of respiration and circulation.
    O'Regan RG; Majcherczyk S
    J Exp Biol; 1982 Oct; 100():23-40. PubMed ID: 6816893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of ventral surface CO2/H+-sensitive neurons by purinergic signalling.
    Wenker IC; Sobrinho CR; Takakura AC; Moreira TS; Mulkey DK
    J Physiol; 2012 May; 590(9):2137-50. PubMed ID: 22411009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphé-pontomedullary respiratory network.
    Nuding SC; Segers LS; Shannon R; O'Connor R; Morris KF; Lindsey BG
    Philos Trans R Soc Lond B Biol Sci; 2009 Sep; 364(1529):2501-16. PubMed ID: 19651652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A negative interaction between central and peripheral respiratory chemoreceptors may underlie sleep-induced respiratory instability: a novel hypothesis.
    Day TA; Wilson RJ
    Adv Exp Med Biol; 2008; 605():447-51. PubMed ID: 18085315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiology of breathing and respiratory control during sleep.
    Krimsky WR; Leiter JC
    Semin Respir Crit Care Med; 2005 Feb; 26(1):5-12. PubMed ID: 16052413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phox2b-expressing retrotrapezoid neurons and the integration of central and peripheral chemosensory control of breathing in conscious rats.
    Takakura AC; Barna BF; Cruz JC; Colombari E; Moreira TS
    Exp Physiol; 2014 Mar; 99(3):571-85. PubMed ID: 24363384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pilocarpine-induced status epilepticus reduces chemosensory control of breathing.
    Maia OAC; Malheiros-Lima MR; Oliveira MA; Castro CL; Moriya HT; Tavares-de-Lima W; Takakura AC; Moreira TS
    Brain Res Bull; 2020 Aug; 161():98-105. PubMed ID: 32433938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat.
    Nattie E; Li A
    J Appl Physiol (1985); 2006 Dec; 101(6):1596-606. PubMed ID: 16902062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. To breathe or not to breathe? That is the question.
    Spyer KM
    Exp Physiol; 2009 Jan; 94(1):1-10. PubMed ID: 19042981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carotid Body: The Primary Peripheral Arterial Chemoreceptor.
    Lazarov NE; Atanasova DY
    Adv Anat Embryol Cell Biol; 2023; 237():1-3. PubMed ID: 37946073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central CO2 chemoreception: a mechanism involving P2 purinoceptors localized in the ventrolateral medulla of the anaesthetized rat.
    Thomas T; Ralevic V; Gadd CA; Spyer KM
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):899-905. PubMed ID: 10358128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purinergic signalling contributes to chemoreception in the retrotrapezoid nucleus but not the nucleus of the solitary tract or medullary raphe.
    Sobrinho CR; Wenker IC; Poss EM; Takakura AC; Moreira TS; Mulkey DK
    J Physiol; 2014 Mar; 592(6):1309-23. PubMed ID: 24445316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ontogeny of central CO2 chemoreception: chemosensitivity in the ventral medulla of developing bullfrogs.
    Taylor BE; Harris MB; Leiter JC; Gdovin MJ
    Am J Physiol Regul Integr Comp Physiol; 2003 Dec; 285(6):R1461-72. PubMed ID: 14615406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CO2, brainstem chemoreceptors and breathing.
    Nattie E
    Prog Neurobiol; 1999 Nov; 59(4):299-331. PubMed ID: 10501632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata.
    Huckstepp RT; Llaudet E; Gourine AV
    PLoS One; 2016; 11(12):e0167861. PubMed ID: 27936179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.